Plant and Soil

, Volume 401, Issue 1–2, pp 213–229 | Cite as

Volatiles from biofumigant plants have a direct effect on carpogenic germination of sclerotia and mycelial growth of Sclerotinia sclerotiorum

  • Rachel Warmington
  • John P. Clarkson
Regular Article



Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.


Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.


All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.


It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.


Sclerotinia sclerotiorum Biofumigation Glucosinolate Isothiocyanate Brassica 



This work was carried out as part of a PhD studentship (CP80) funded by the Horticultural Development Company, UK. The author acknowledges assistance from Andrew Jukes and Julie Jones at Warwick Crop Centre for their assistance and guidance with HPLC analysis and statistical analysis, respectively.


  1. Akram A, Iqbal SM, Ahmed N, Iqbal U, Ghafoor A (2008) Morphological variability and mycelial compatibility among the isolates of Sclerotinia sclerotiorum associated with stem rot of chickpea. Pak J Bot 40:2663–2668Google Scholar
  2. Antonious GF, Bomford M, Vincelli P (2009) Screening Brassica species for glucosinolate content. J Environ Sci Health 44:311–316Google Scholar
  3. Bangarwa SK, Norsworthy JK, Mattice JD, Gbur EE (2011) Glucosinolate and isothiocyanate production from Brassicaceae cover crops in a plasticulture production system. Weed Sci 59:247–254CrossRefGoogle Scholar
  4. Banks JG, Board RG, Sparks NHC (1986) Natural antimicrobial systems and their potential in food preservation of the future. Biotechnol Appl Biochem 8:103–107PubMedGoogle Scholar
  5. Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98. doi: 10.1080/07060660109506914 CrossRefGoogle Scholar
  6. Bending GD, Lincoln SD (1999) Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biol Biochem 31:695–703. doi: 10.1016/s0038-0717(98)00163-1 CrossRefGoogle Scholar
  7. Bensen TA, Smith RF, Subbarao KV, Koike ST, Fennimore SA, Shem-Tov S (2009) Mustard and other cover crop effects vary on lettuce drop caused by Sclerotinia minor and on weeds. Plant Dis 93:1019–1027. doi: 10.1094/PDIS-93-10-1019 CrossRefGoogle Scholar
  8. Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol-Rev Can Phytopathol 16:93–108CrossRefGoogle Scholar
  9. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16. doi: 10.1111/j.1364-3703.2005.00316.x CrossRefPubMedGoogle Scholar
  10. Bomford M (2009) Biofumigation for soil health in organic high tunnel and conventional field vegetable production systems. Sustain Agric Res Educ. Accessed 30 Apr 2012
  11. Chew FS (1987) Biologically active natural products - potential use in agriculture. In: MJ Comstock (ed) ACS Symposium Series. American Chemical Society, USAGoogle Scholar
  12. Clarkson JP, Staveley J, Phelps K, Young CS, Whipps JM (2003) Ascospore release and survival in Sclerotinia sclerotiorum. Mycol Res 107:213–222. doi: 10.1017/s0953756203007159 CrossRefPubMedGoogle Scholar
  13. Clarkson JP, Phelps K, Whipps JA, Young CS, Smith JA, Watling M (2007) Forecasting sclerotinia disease on lettuce: a predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia. Phytopathology 97:621–631Google Scholar
  14. Clarkson JP, Carter HE, Coventry E (2010) First report of Sclerotinia subarctica nom. prov. (Sclerotinia species 1) in the UK on Ranunculus acris. Plant Pathol 59:1173–1173. doi: 10.1111/j.1365-3059.2010.02271.x CrossRefGoogle Scholar
  15. Ćosić J, Jurković D, Vrandečić K, Kaučić D (2012) Survival of buried Sclerotinia sclerotiorum sclerotia in undisturbed soil. Helia 35:73–78CrossRefGoogle Scholar
  16. Dandurand L-M, Mosher RD, Knudsen GR (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can J Microbiol 46:1051–1057. doi: 10.1139/w00-087 CrossRefPubMedGoogle Scholar
  17. Dillard H, Ludwig J, Hunter J (1995) Conditioning sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Dis 79:411–415CrossRefGoogle Scholar
  18. Duncan RW, Dilantha Fernando WG, Rashid KY (2006) Time and burial depth influencing the viability and bacterial colonization of sclerotia of Sclerotinia sclerotiorum. Soil Biol Biochem 38:275–284. doi: 10.1016/j.soilbio.2005.05.003 CrossRefGoogle Scholar
  19. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi: 10.1016/S0031-9422(00)00316-2 CrossRefPubMedGoogle Scholar
  20. Fan CM, Xiong GR, Qi P, Ji GH, He YQ (2008) Potential biofumigation effects of Brassica oleracea var. caulorapa on growth of fungi. J Phytopathol 156:321–325. doi: 10.1111/j.1439-0434.2007.01343.x CrossRefGoogle Scholar
  21. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201CrossRefGoogle Scholar
  22. Finney DJ (1971) Probit Analysis. Wiley Subscription Services, Inc., A Wiley Company, New YorkGoogle Scholar
  23. Geier B (2009) On-farm study results: biofumigation and soil solarization. Kentucky State University, KentuckyGoogle Scholar
  24. Gupta S, Sangha MK, Kaur G, Atwal AK, Banga S, Banga SS (2012) Variability for leaf and seed glucosinolate contents and profiles in a germplasm collection of the Brassica juncea. Biochem Anal Biochem 1:1–5Google Scholar
  25. Hao JJ, Subbarao KV, Duniway JM (2003) Germination of Sclerotinia minor and S. sclerotiorum sclerotia under various soil moisture and temperature combinations. Phytopathology 93:443–450CrossRefPubMedGoogle Scholar
  26. Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when “to be or not to be” a pathogen? FEMS Microbiol Lett 251:177–184. doi: 10.1016/j.femsle.2005.07.040 CrossRefPubMedGoogle Scholar
  27. Huang HC, Erickson RS, Phillippe LM, Mueller CA, Sun SK, Huang JW (2006) Control of apothecia of Sclerotinia sclerotiorum by soil amendment with S–H mixture or Perlka® in bean, canola and wheat fields. Soil Biol Biochem 38:1348–1352. doi: 10.1016/j.soilbio.2005.10.015 CrossRefGoogle Scholar
  28. Jensen B, Finckh M, Munk L, Hauser T (2008) Susceptibility of wild carrot (Daucus carota ssp. carota) to Sclerotinia sclerotiorum. Eur J Plant Pathol 122:359–367. doi: 10.1007/s10658-008-9300-7 CrossRefGoogle Scholar
  29. Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Science and Technology: 1–21. doi:  10.1080/09583157.2014.940847
  30. Kirkegaard JA, Sarwar M (1998) Biofumigation potential of Brassicas. Plant Soil 201:71–89CrossRefGoogle Scholar
  31. Kirkegaard JA, Gardner PA, Desmarchelier JM, Angus JF (1993) Biofumigation — using Brassica species to control pests and diseases in horticulture and agriculture. In: Wratten N, Mailer RJ (eds) 9th Australian research assembly on brassicas. Agricultural Research Institute, Wagga WaggaGoogle Scholar
  32. Kojima M, Oawa K (1971) Studies on the effect of isothiocyanates and their analogues on microorganisms. (I) Effects of isothiocyanates on the oxygen uptake of yeasts. J Ferment Technol 49:740–746Google Scholar
  33. Kurt Ş, Güneş U, Soylu EM (2011) In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Manag Sci 67:869–875. doi: 10.1002/ps.2126 CrossRefPubMedGoogle Scholar
  34. Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using Brassica green manures. Crop Prot 26:1067–1077. doi: 10.1016/j.cropro.2006.10.004 CrossRefGoogle Scholar
  35. Leiner RH, Winton LM (2006) Differential production of sclerotia by isolates of Sclerotinia sclerotiorum from Alaska. Can J Plant Pathol 28:435–440. doi: 10.1080/07060660609507317 CrossRefGoogle Scholar
  36. Li Z, Zhang M, Wang Y, Li R, Dilantha FWG (2008) Mycelial compatibility group and pathogenicity variation of Sclerotinia sclerotiorum populations in sunflower from China, Canada and England. Plant Pathol J 7:131–139CrossRefGoogle Scholar
  37. Manici LM, Lazzeri L, Palmieri S (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45:2768–2773. doi: 10.1021/jf9608635 CrossRefGoogle Scholar
  38. Matheron ME, Porchas M (2008) Assessment of fungicides to manage Sclerotinia drop of lettuce in 2007. Vegetable ReportGoogle Scholar
  39. Matthiessen JN, Kirkegaard JA (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265. doi: 10.1080/07352680600611543 CrossRefGoogle Scholar
  40. McQuilken M (2011) Control of Sclerotinia disease on carrots. HDC Factsheet 19/11Google Scholar
  41. Merriman PR (1976) Survival of sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem 8:385–389. doi: 10.1016/0038-0717(76)90038-9 CrossRefGoogle Scholar
  42. Mithen RF (2001) Glucosinolates and their degradation products. Advances in Botanical Research. Academic PressGoogle Scholar
  43. Molina-Vargas LF (2013) Mechanism of action of isothiocyanates. A review. Agron Colomb 31:68–75Google Scholar
  44. Morra MJ, Kirkegaard JA (2002) Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biol Biochem 34:1683–1690. doi: 10.1016/s0038-0717(02)00153-0 CrossRefGoogle Scholar
  45. Mueller DS, Pedersen WL, Hartman GL (2002) Effect of crop rotation and tillage system on Sclerotinia stem rot on soybean. Can J Plant Pathol 24:450–456. doi: 10.1080/07060660209507033 CrossRefGoogle Scholar
  46. Ojaghian MR, Jiang H, Xie G, Cui Z, Zhang J, Li B (2012) In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. Plant Pathol J 28:185–190CrossRefGoogle Scholar
  47. Ordonez-Valencia C, Alarcon A, Ferrera-Cerrato R, Hernandez-Cuevas LV (2009) In vitro antifungl effects of potassium bicarbonate on Trichoderma sp. and Sclerotinia sclerotiorum. Mycoscience 50:380–387CrossRefGoogle Scholar
  48. Porter I, Pung H, Villalta O, Crnov R, Stewart A (2002) Development of biological controls for Sclerotinia diseases of horticultural crops in Australasia. 2nd Australasian lettuce Industry Conference, University of Queensland Gatton Campus.Google Scholar
  49. Purdy LH (1979) Sclerotinia sclerotiorum: History, diseases and symptomatology. host range, geographical distribution and impact. Phytopathology 69:875–880CrossRefGoogle Scholar
  50. Rahimi F, Rahmanpour S, Rezaee S, Larijani K (2013) Effect of volatiles derived from Brassica plants on the growth of Sclerotinia sclerotiorum. Arch Phytopathol Plant Protect 47:15–28. doi: 10.1080/03235408.2013.800695 CrossRefGoogle Scholar
  51. Rahmanpour S, Backhouse D, Nonhebel HM (2013) Toxicity of hydrolysis volatile products of Brassica plants to Sclerotinia sclerotiorum, in vitro. Arch Phytopathol Plant Protect: 1–6. doi:  10.1080/03235408.2013.860723
  52. Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of Brassicas. Plant Soil 201:103–112. doi: 10.1023/a:1004381129991 CrossRefGoogle Scholar
  53. Sexton AC, Kirkegaard JA, Howlett BJ (1999) Glucosinolates in Brassica juncea and resistance to Australian isolates of Leptosphaeria maculans, the blackleg fungus. Australas Plant Pathol 28:95–102. doi: 10.1071/AP99017 CrossRefGoogle Scholar
  54. Smolinska U, Horbowicz M (1999) Fungicidal activity of volatiles from selected cruciferous plants against resting propagules of soil-borne fungal pathogens. J Phytopathol 147:119–124. doi: 10.1046/j.1439-0434.1999.147002119.x CrossRefGoogle Scholar
  55. Swaminathan J, McLean KL, Pay JM, Stewart A (1999) Soil solarisation: a cultural practice to reduce viability of sclerotia of Sclerotinia sclerotiorum in New Zealand soils. N Z J Crop Hortic Sci 27:331–335. doi: 10.1080/01140671.1999.9514113 CrossRefGoogle Scholar
  56. Tollsten L, Bergström G (1988) Headspace volatiles of whole plants and macerated plant parts of Brassica and Sinapis. Phytochemistry 27:2073–2077. doi: 10.1016/0031-9422(88)80099-2 CrossRefGoogle Scholar
  57. Tsao R, Yu Q, Potter J, Chiba M (2002) Direct and simultaneous analysis of sinigrin and allyl isothiocyanate in mustard samples by high-performance liquid chromatography. J Agric Food Chem 50:4749–4753CrossRefPubMedGoogle Scholar
  58. Velasco P, Soengas P, Vilar M, Cartea ME (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Hortic Sci 144:551–558Google Scholar
  59. Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates – A review. LWT Food Sci Technol 42:1561–1572. doi: 10.1016/j.lwt.2009.05.023 CrossRefGoogle Scholar
  60. Vleugels T, Baert J, van Bockstaele E (2013) Morphological and pathogenic characterization of genetically diverse Sclerotinia isolates from European red clover crops (Trifolium Pratense L.). J Phytopathol 161:254–262. doi: 10.1111/jph.12056 CrossRefGoogle Scholar
  61. Wathelet J-P, Iori R, Leoni O, Quinsac A, Palmieri S (2004) Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 3:257–266Google Scholar
  62. Willetts H, Wong J (1980) The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Bot Rev 46:101–165. doi: 10.1007/bf02860868 CrossRefGoogle Scholar
  63. Zsolnai T (1966) Antimicrobial effect of thiocyanates and isothiocyanates. Arnzeim Forsch 16:870–876Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Eden Project, BodelvaCornwallUK
  2. 2.Warwick Crop Centre, School of Life SciencesUniversity of WarwickWellesbourneUK

Personalised recommendations