Plant and Soil

, Volume 403, Issue 1–2, pp 7–20 | Cite as

Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest

  • Flávio Fonseca do Carmo
  • Claudia Maria Jacobi
Regular Article



We investigated how outcrops of different geological origins enhance the plant megadiversity of the Atlantic rainforest hotspot.


We collected vegetation, topographic, and soil fertility data from 50 2 m2 plots in each of nine rock outcrops (three ironstones -or cangas, three quartzites and three granitoids) in the Iron Quadrangle, SE Brazil. We examined the response of community diversity and structure patterns to edaphic and topographic gradients by means of diversity profiles, clustering and ordination analyses. Species were organized into nine functional groups.


We inventoried 17,690 individuals belonging to 352 species. Functional groups with largest cover were sclerophytic shrubs (in cangas), graminoid and poikilohydric herbs (in both granitoids and quartzites). Granitoid plant communities were the least diverse, on account of fewer substrate types leading to more xeric conditions. The multivariate analyses sorted the outcrops by geological origin, although within-lithotype similarity was low. There was stronger similarity between cangas and quartzites, separated from granitoids. Soil was nutrient-poor, and variables most influencing this pattern were number of substrates, topographic heterogeneity, soil depth, and aluminum saturation.


Saxicolous plant communities responded more strongly to microtopographic than soil fertility parameters. Each lithotype contributes differently to the high alpha- and especially beta-diversity within the Atlantic Rainforest matrix.


Plant trait–environment relationship Rare plants Nutrient-impoverished soils Nurse objects Saxicolous communities Parent rock Microtopography 



This study is part of the first author’s dissertation. We thank the Brazilian National Council for Scientific and Technological Development (CNPq) for fellowships to both authors, the Minas Gerais State Research Council (FAPEMIG), CNPq and the US Fish and Wildlife Service for financial support; Minas Gerais Power Company (CEMIG S.A.) for allowing research within the Estação Ambiental PETI; and the Minas Gerais Forest Institute (IEF-MG) for the research licenses. We are grateful to all colleagues who helped during field work: Felipe do Carmo, Ericson Silva, Leonardo Cotta, Lucas Perillo, Gustavo Heringer, Iara Campos, Matheus Toshiba, and Bruno Falcão. The constructive comments of two anonymous reviewers greatly improved the final version of the manuscript.

Supplementary material

11104_2015_2735_MOESM1_ESM.pdf (504 kb)
ESM 1 (PDF 504 kb)


  1. Alkmim FF (2015) Geological background: a tectonic panorama of Brazil. In: Vieira BC et al (eds) Landscapes and landforms of Brazil (world geomorphological landscapes). Springer, New York, pp 9–18Google Scholar
  2. Alves RJV, Silva NG, Oliveira JA, Medeiros D (2014) Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas. Braz J Biol 74:355–362CrossRefPubMedGoogle Scholar
  3. Amorim PK, Batalha MA (2008) Soil chemical factors and grassland species density in Emas National Park (central Brazil). Braz J Biol 68:279–285CrossRefPubMedGoogle Scholar
  4. Balslev H, Luteyn J (1992) Páramo: an Andean ecosystem under human influence. Academic Press, LondonGoogle Scholar
  5. Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soils associated with rock outcrops in the Brazilian mountains ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  6. Bremer H, Sander H (2000) Inselbergs: geomorphology and geoecology. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, New York, pp 7–35CrossRefGoogle Scholar
  7. Burke A (2003) Inselbergs in a changing world – global trends. Divers Distrib 9:375–383CrossRefGoogle Scholar
  8. Carmo FF, Jacobi CM (2012) Vascular plants on cangas. In: Jacobi CM, Carmo FF (eds) Diversidade Florística nas Cangas do Quadrilátero Ferrífero. Ed. IDM, Belo Horizonte, pp 43–50Google Scholar
  9. Carmo FF, Jacobi CM (2013) A vegetação de canga no Quadrilátero Ferrífero, Minas Gerais: caracterização e contexto fitogeográfico. Rodriguésia 64:527–541CrossRefGoogle Scholar
  10. Carmo FF, Campos IC, Jacobi CM (2015) Effects of fine-scale surface heterogeneity on rock outcrop plant communities. J Veg Sci. doi: 10.1111/jvs.12342 Google Scholar
  11. de Paula LFA, Negreiros D, Azevedo LO, Fernandes RL, Stehmann JR, Silveira FAO (2015) Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodivers Conserv 24:2239–2356CrossRefGoogle Scholar
  12. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  13. Dorr JN II (1969) Physiographic, stratigraphic and structural development of Quadrilátero Ferrífero, Minas Gerais, Brazil. USGS. Prof. Paper, 641-A, WashingtonGoogle Scholar
  14. Fernandes MLS (2007) Minerais Formadores de Rocha. In: Sgarbi GNC (ed) Petrografia macroscópica das rochas ígneas, sedimentares e metamórficas. Ed. UFMG, Belo HorizonteGoogle Scholar
  15. Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeogr 15:97–108CrossRefGoogle Scholar
  16. Gibson N, Coates D, van Leeuwen S, Yates C (2015) Hot, dry and ancient: banded iron formations of Western Australia. In: Carmo FF, Kamino LHY (eds) Geossistemas ferruginosos do Brasil: áreas prioritárias para a conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais. 3i Editora, Belo Horizonte, pp 361–391Google Scholar
  17. Ginocchio R, Baker AJM (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77:185–194CrossRefGoogle Scholar
  18. Giulietti AM, Rapini A, Andrade MJG, Queiroz LP, Silva JMC (2009) Plantas raras do Brasil. Conservation International, Belo HorizonteGoogle Scholar
  19. Gröger A, Huber O (2007) Rock outcrop habitats in the Venezuelan Guayana lowlands: their main vegetation types and floristic components. Braz J Bot 30:599–609CrossRefGoogle Scholar
  20. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  21. Hazelton PA, Murphy B (eds) (2007) Interpreting soil test results: what do all the numbers mean? CSIRO, CollingwoodGoogle Scholar
  22. Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86CrossRefGoogle Scholar
  23. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRefGoogle Scholar
  24. Jacobi CM, Carmo FF (2012) Diversidade florística nas cangas do Quadrilátero Ferrífero. Ed IDM, Belo HorizonteGoogle Scholar
  25. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200CrossRefGoogle Scholar
  26. Jacobi CM, Carmo FF, Campos IC (2011) Soaring extinction threats to endemic plants in Brazilian metal-rich regions. Ambio 40:540–543CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jacobi CM, Carmo FF, Campos IC (2015) Iron geosystems: priority areas for conservation in Brazil. In: Mark Tibbett (Org.) Mining in ecologically sensitive landscapes. CRC Press, in pressGoogle Scholar
  28. Kluge M, Brulfert J (2000) Ecophysiology of vascular plants on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, New York, pp 143–176CrossRefGoogle Scholar
  29. Kruckeberg AR (2004) Geology and plant life: the effects of landforms and rock types on plants. University of Washington, SeattleGoogle Scholar
  30. Kunz KL, Larson DW (2006) Influences of microhabitat constraints and rock-climbing disturbance on cliff-face vegetation communities. Conserv Biol 20:821–832Google Scholar
  31. Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31CrossRefGoogle Scholar
  32. Larson DW, Matthes U, Kelly PE (2000) Cliff ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pérez-Harguindeguy JGPN, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 171–186Google Scholar
  34. Leão TC, Fonseca CR, Peres CA, Tabarelli M (2014) Predicting extinction risk of Brazilian Atlantic forest angiosperms. Conserv Biol 28:1349–1359CrossRefPubMedGoogle Scholar
  35. List of Species of the Brazilian Flora (2014) Rio de Janeiro Botanical Garden.
  36. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden BeachGoogle Scholar
  37. McCune B, Mefford M (2011) PC-ORD - multivariate analysis of ecological data. Version 6.0. MjM Software, Gleneden BeachGoogle Scholar
  38. Meirelles ST, Pivello VR, Joly CA (1999) The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. Environ Conserv 26:10–20CrossRefGoogle Scholar
  39. Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR (2013) Soil-vegetation relationship in quartzite and ferruginous Brazilian rocky outcrops. Folia Geobot 48:509–521CrossRefGoogle Scholar
  40. Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2004) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Sierra MadreGoogle Scholar
  41. Monteiro H, Vasconcelos PM, Farley KA, Spier C, Mello C (2014) (U-Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim Cosmochim Ac 131:267–289CrossRefGoogle Scholar
  42. Mucina L, Wardell-Johnson GW (2011) Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant Soil 341:1–23CrossRefGoogle Scholar
  43. Mucina L, Laliberté E, Thiele KR, Dodson JR, Harvey J (2014) Biogeography of Kwongan: origins, diversity, endemism and vegetation patterns. In: Lambers H (ed) Plant life on the sandplains in Southwest Australia, a global biodiversity hotspot. UWA Publishing, Crawley, pp 35–79Google Scholar
  44. Munguía-Rosas MA, Sosa VJ (2008) Nurse plants vs. nurse objects: effects of woody plants and rocky cavities on the recruitment of the Pilosocereus leucocephalus columnar cactus. Ann Bot 101:175–185CrossRefPubMedPubMedCentralGoogle Scholar
  45. Novais RF, Alvarez VVH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCB (eds) (2007) Fertilidade do solo. Sociedade Brasileira de Ciência do Solo, ViçosaGoogle Scholar
  46. Oliveira RS, Galvão HC, Campos MC, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–94CrossRefPubMedGoogle Scholar
  47. Parmentier I, Stévart T, Hardy OJ (2005) The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. J Biogeogr 32:685–696CrossRefGoogle Scholar
  48. Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234CrossRefGoogle Scholar
  49. Porembski S (2000) The invasibility of tropical granite outcrops (‘inselbergs’) by exotic weeds. J R Soc Wes Aust 83:131–137Google Scholar
  50. Porembski S, Becker U, Seine R (2000) Island on islands: habitat on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, New York, pp 49–68CrossRefGoogle Scholar
  51. Rahangdale SS, Rahangdale SR (2014) Plant species composition on two rock outcrops from the northern Western Ghats, Maharashtra, India. JoTT 6:5593–5612Google Scholar
  52. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Cons 142:1141–1153CrossRefGoogle Scholar
  53. Ribeiro PL, Rapini A, Damascena LS, Berg C (2014) Plant diversification in the Espinhaço range: insights from the biogeography of Minaria (Apocynaceae). Taxon 63:1253–1264CrossRefGoogle Scholar
  54. Ronquim CC (2010) Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. Boletim de Pesquisa e Desenvolvimento (Embrapa) 8:1–26Google Scholar
  55. Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16CrossRefGoogle Scholar
  56. Salgado AAR, Carmo FF (2015) Quadrilátero Ferrífero: a beautiful and neglected landscape between the gold and iron ore reservoirs. In: Vieira BC et al (eds) Landscapes and landforms of Brazil, world geomorphological landscapes. Springer, New York, pp 319–330Google Scholar
  57. Sarthou C, Villiers JF, Ponge JF (2003) Shrub vegetation on tropical granitic inselbergs in French Guiana. J V Sci 14:645–652Google Scholar
  58. Sarthou C, Larpin D, Fonty E, Pavoine S, Ponge JF (2010) Stability of plant communities along a tropical inselberg ecotone in French Guiana (South America). Flora 205:682–694CrossRefGoogle Scholar
  59. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schaefer CEGR, Ker JC, Gilkes R, Campos JCF, Costa LM, Saadi A (2002) Pedogenesis on the uplands of the Diamantina Plateau, Minas Gerais, Brazil: a chemical and micropedological study. Geoderma 107:243–269CrossRefGoogle Scholar
  61. Schaefer CEGR, Cândido HG, Corrêa GR, Pereira A, Nunes JA, Souza OF, Marins A, Filho EF, Ker JC (2015) Solos desenvolvidos sobre canga ferruginosa no Brasil: uma revisão crítica e papel ecológico de termiteiros. In: Carmo FF and Kamino LHY (orgs) Geossistemas Ferruginosos do Brasil: Áreas Prioritárias para a Conservação da Diversidade Geológica e Biológica, Patrimônio Cultural e Serviços Ambientais. 3i Editora, Belo Horizonte, pp. 77–102Google Scholar
  62. Schut AGT, Wardell-Johnson YCJ, Keppel G, Baran I, Franklin SE, Hopper SD, Van Niel KP, Mucina L, Byrne M (2014) Rapid characterization of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot. PLoS ONE 9, e82778CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seine R, Porembski S, Becker U (2000) Phytogeography. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, New York, pp 435–451CrossRefGoogle Scholar
  64. Séleck M, Bizoux JP, Colinet G, Faucon MP, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469CrossRefGoogle Scholar
  65. Silveira FA, Negreiros D, Barbosa NP, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2015) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil. doi: 10.1007/s11104-015-2637-8
  66. Souza FCR, Carmo FF (2015) Geossistemas ferruginosos no Brasil. In: Carmo FF, Kamino LHY (eds) Geossistemas ferruginosos do Brasil: áreas prioritárias para a conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais. 3i Editora, Belo Horizonte, pp 47–76Google Scholar
  67. Szarzynsky J (2000) Xeric islands: environmental conditions on inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, New York, pp 37–48CrossRefGoogle Scholar
  68. Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6:283–290CrossRefGoogle Scholar
  69. Violle C, Jiang L (2009) Towards a trait-based quantification of species niche. J Pl Ecol 2:87–93CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Flávio Fonseca do Carmo
    • 1
    • 2
  • Claudia Maria Jacobi
    • 2
  1. 1.Instituto PrístinoBelo HorizonteBrazil
  2. 2.Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations