Plant and Soil

, Volume 400, Issue 1–2, pp 275–284 | Cite as

Fine root growth and contribution to soil carbon in a mixed mature Pinus koraiensis forest

  • Cunguo Wang
  • Shijie Han
  • Yumei Zhou
  • Junhui Zhang
  • Xingbo Zheng
  • Guanhua Dai
  • Mai-He Li
Regular Article


Background and aims

Forest fine roots contribute substantially to carbon cycling, and old growth forests have an important role in the global carbon budget. We, hence, studied temporal variation in fine root production and turnover in an old forest.


Fine root dynamics were investigated, using sequential soil cores for 6 years, and related to rainfall and air temperature in a mixed mature broad-leaved Pinus koraiensis forest in northeastern China.


The mass, production, mortality, and disappearance of fine roots showed intra-annual variation. Monthly live and dead fine root mass were significantly positively correlated with meteorological conditions of the previous month. Monthly fine root production was associated with air temperature of the current month. The intra-annual pattern of fine root production was similar to that of net primary production and opposite to that of leaf litterfall. Total fine root production accounted for 25 % of net primary production, and the fine root input to soil carbon was 1.2 times larger than the leaf litterfall.


Our results indicate tight linkages between fine roots and meteorological conditions. The important role of fine roots in forest carbon budget suggests that forest carbon flux estimations need to take fine root dynamics into account.


Old growth forests Fine root mass Fine root production Soil carbon 



Financial support was obtained from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050201, XDA05020300), the State Key Program of National Natural Science of China (Grant No. 41330530), and the State Key Laboratory of Forest and Soil Ecology (Grant No. LFSE2013-01). We thank Shutang Wang, Yuan Xu, Yan Zhang, Xubing Cheng, Jing Zhao, Lufu Zhao and Xichang He for assistance in field and laboratory work, and Melissa Dawes for improving the English.


  1. Bai F, Sang W, Axmacher JC (2011) Forest vegetation responses to climate and environmental change: a case study from Changbai Mountain, NE China. For Ecol Manag 262:2052–2060. doi: 10.1016/j.foreco.2011.08.046 CrossRefGoogle Scholar
  2. Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari H-S, Jourdan C (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372. doi: 10.1007/s11104-012-1313-5 CrossRefGoogle Scholar
  3. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration. Science 339:1615–1618. doi: 10.1126/science.1231923 CrossRefPubMedGoogle Scholar
  4. Côté B, Hendershot WH, Fyles JW, Roy AG, Bradley R, Biron PM, Courchesne F (1998) The phenology of fine root growth in a maple-dominated ecosystem: relationships with some soil properties. Plant Soil 201:59–69. doi: 10.1023/A:1004351705516 CrossRefGoogle Scholar
  5. De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang YP, Luo Y, Jain AK, El-Masri B, Hickler T (2014) Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol 203:883–899. doi: 10.1111/nph.12847 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42. doi: 10.1046/j.1469-8137.2000.00686.x CrossRefGoogle Scholar
  7. Ekblad A, Wallander H, Godbold D, Cruz C, Johnson D, Baldrian P, Björk R, Epron D, Kieliszewska-Rokicka B, Kjøller R (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27. doi: 10.1007/s11104-013-1630-3 CrossRefGoogle Scholar
  8. Fairley R, Alexander I (1985) Methods of calculating fine root production in forests. Blackwell Scientific Publications, OxfordGoogle Scholar
  9. Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322. doi: 10.1126/science.1058629 CrossRefPubMedGoogle Scholar
  10. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi: 10.1016/S0038-0717(02)00251-1 CrossRefGoogle Scholar
  11. Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277. doi: 10.1016/j.foreco.2010.10.016 CrossRefGoogle Scholar
  12. Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24. doi: 10.1007/s11104-005-3701-6 CrossRefGoogle Scholar
  13. Gough C, Vogel C, Schmid H, Su H-B, Curtis P (2008) Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric For Meteorol 148:158–170. doi: 10.1016/j.agrformet.2007.08.004 CrossRefGoogle Scholar
  14. Guo ZL, Zheng JP, Ma YD, Han SJ (2006) A preliminary study on fine root biomass and dynamics of woody plants in several major forest communities of Changbai Mountain, China. Acta Ecol Sin 26:2855–2862 in Chinese with English abstractGoogle Scholar
  15. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. doi: 10.1038/nature06591 CrossRefPubMedGoogle Scholar
  16. Helmisaari HS (1995) Nutrient cycling in Pinus sylvestrisstands in eastern Finland. Plant Soil 168:327–336. doi: 10.1007/BF00029345 CrossRefGoogle Scholar
  17. Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104CrossRefGoogle Scholar
  18. Hendrick RL, Pregitzer KS (1996) Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J Ecol 84:167–176CrossRefGoogle Scholar
  19. Hendrick RL, Pregitzer K (1997) The relationship between fine root demography and the soil environment in northern hardwood forests. Ecoscience 4:99–105Google Scholar
  20. Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–251. doi: 10.1023/A:1015030320845 CrossRefGoogle Scholar
  21. Hertel D, Strecker T, Müller-Haubold H, Leuschner C (2013) Fine root biomass and dynamics in beech forests across a precipitation gradient-is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol 101:1183–1200. doi: 10.1111/1365-2745.12124 CrossRefGoogle Scholar
  22. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  23. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554. doi: 10.1016/j.tree.2006.06.004 CrossRefPubMedGoogle Scholar
  24. Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366PubMedCentralCrossRefPubMedGoogle Scholar
  25. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77. doi: 10.1023/A:1010760720215 CrossRefGoogle Scholar
  26. Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke J-A, Wookey PA, Agren GI, Sebastia M-T, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84. doi: 10.1038/nature13604 CrossRefPubMedGoogle Scholar
  27. Konôpka B, Noguchi K, Sakata T, Takahashi M, Konôpková Z (2006) Fine root dynamics in a Japanese cedar (Cryptomeria japonica) plantation throughout the growing season. For Ecol Manag 225:278–286. doi: 10.1016/j.foreco.2006.01.004 CrossRefGoogle Scholar
  28. Konôpka B, Pajtík J, Malová M (2013) Fine root standing stock and production in young beech and spruce stands. Lesn Cas For J 59:163–171Google Scholar
  29. Liu QJ, Xu QQ, Zhang GP, Zhou CP (2009) Temporal and spatial variation of soil nitrogen mineralization in northern slope of Changbai Mountain in Northeast China. Acta Ecol Sin 29:5656–5664 in Chinese with English abstractGoogle Scholar
  30. Lukac M, Godbold DL (2010) Fine root biomass and turnover in southern taiga estimated by root inclusion nets. Plant Soil 331:505–513. doi: 10.1007/s11104-009-0271-z CrossRefGoogle Scholar
  31. Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215. doi: 10.1038/nature07276 CrossRefPubMedGoogle Scholar
  32. Lyr H, Hoffmann G (1967) Growth rates and growth periodicity of tree roots. Int Rev For Res 2:181–236CrossRefGoogle Scholar
  33. Mainiero R, Kazda M, Schmid I (2010) Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. Eur J For Res 129:1001–1009. doi: 10.1007/s10342-010-0383-2
  34. McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490CrossRefGoogle Scholar
  35. McCormack ML, Adams TS, Smithwick EA, Eissenstat DM (2014) Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95:2224–2235. doi: 10.1890/13-1942.1 CrossRefPubMedGoogle Scholar
  36. McCormack ML, Gaines K, Pastore M, Eissenstat DM (2015a) Early season root production in relation to leaf production among six diverse temperate tree species. Plant Soil 389:121–129. doi: 10.1007/s11104-014-2347-7 CrossRefGoogle Scholar
  37. McCormack ML, Crisfield E, Raczka B, Schnekenburger F, Eissenstat DM, Smithwick EA (2015b) Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecol Model 297:107–117. doi: 10.1016/j.ecolmodel.2014.11.013 CrossRefGoogle Scholar
  38. Meier I, Leuschner C (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Chang Biol 14:2081–2095. doi: 10.1111/j.1365-2486.2008.01634.x
  39. Persson HÅ, Stadenberg I (2009) Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant Soil 318:1–14. doi: 10.1007/s11104-008-9811-1 CrossRefGoogle Scholar
  40. Persson HÅ, Stadenberg I (2010) Fine root dynamics in a Norway spruce forest (Picea abies (L.) karst) in eastern Sweden. Plant Soil 330:329–344. doi: 10.1007/s11104-009-0206-8 CrossRefGoogle Scholar
  41. Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115. doi: 10.1046/j.1469-8137.2000.00689.x CrossRefGoogle Scholar
  42. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  43. Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662. doi: 10.1890/02-4032 CrossRefGoogle Scholar
  44. Shan JP, Tao DL, Wang M, Zhao SD (1993) Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain. Chin J Appl Ecol 4:241–245 in Chinese with English abstractGoogle Scholar
  45. Steinaker DF, Wilson SD (2008) Phenology of fine roots and leaves in forest and grassland. J Ecol 96:1222–1229. doi: 10.1111/j.1365-2745.2008.01439.x CrossRefGoogle Scholar
  46. Steinaker DF, Wilson SD, Peltzer DA (2010) Asynchronicity in root and shoot phenology in grasses and woody plants. Glob Chang Biol 16:2241–2251. doi: 10.1111/j.1365-2486.2009.02065.x CrossRefGoogle Scholar
  47. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93. doi: 10.1038/nature12914 CrossRefPubMedGoogle Scholar
  48. Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 302:1344–1345. doi: 10.1126/science.1091841 CrossRefPubMedGoogle Scholar
  49. Vargas R, Trumbore SE, Allen MF (2009) Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol 182:710–718. doi: 10.1111/j.1469-8137.2009.02789.x CrossRefPubMedGoogle Scholar
  50. Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377CrossRefGoogle Scholar
  51. Walle IV, Mussche S, Samson R, Lust N, Lemeur R (2001) The above- and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Ann For Sci 58:507–517. doi: 10.1051/forest:2001141 CrossRefGoogle Scholar
  52. Wang CG, Han SJ, Zhou YM, Yan CF, Cheng XB, Zheng XB, Li MH (2012a) Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China. PLoS One 7:e31042. doi: 10.1371/journal.pone.0031042 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Wang CG, Han SJ, Zhou YM, Zhang JH, Zhang Y, Xu Y, Wang ST (2012b) Fine root mass and internal nutrient cycling in a broad leaved-Korean pine forest community of the Changbai Mountain. Sci Silvae Sin 48:148–153 in Chinese with English abstractGoogle Scholar
  54. Wiley E, Huepenbecker S, Casper BB, Helliker BR (2013) The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage? Tree Physiol 33:1216–1228. doi: 10.1093/treephys/tpt093 CrossRefPubMedGoogle Scholar
  55. Xiao CW, Sang WG, Wang RZ (2008) Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. For Ecol Manag 255:765–773. doi: 10.1016/j.foreco.2007.09.062 CrossRefGoogle Scholar
  56. Yang LY, Li WH (2005) Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China. J Beijing For Uni 27:1–5 in Chinese with English abstractGoogle Scholar
  57. Yang X, Xu M (2003) Biodiversity conservation in Changbai Mountain biosphere reserve, northeastern China: status, problem, and strategy. Biodivers Conserv 12:883–903. doi: 10.1023/A:1022841107685 CrossRefGoogle Scholar
  58. Yang LY, Luo TX, Wu ST (2007) Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, northeast China. Acta Ecol Sin 27:3609–3617 in Chinese with English abstractGoogle Scholar
  59. Yang LY, Wu ST, Zhang LB (2010) Fine root biomass dynamics and carbon storage along a successional gradient in Changbai Mountains, China. Forestry 83:379–387. doi: 10.1093/forestry/cpq020 CrossRefGoogle Scholar
  60. Yuan ZQ, Li BH, Bai XJ, Lin F, Shi S, Ye J, Wang XG, Hao ZQ (2010) Composition and seasonal dynamics of litter falls in a broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, Northeast China. Chin J Appl Ecol 21:2171–2178 in Chinese with English abstractGoogle Scholar
  61. Zhang N, Yu GR, Zhao SD, Yu ZL (2003) Ecosystem productivity process model for landscape based on remote sensing and surface data. Chin J Appl Ecol 14:643–652 in Chinese with English abstractGoogle Scholar
  62. Zheng JP, Guo ZL, Xu CY, Fan CN (2011) Seasonal dynamics of litter accumulation in major forest communities on the northern slope of Changbai mountain northeast China. Acta Ecol Sin 31:4299–4307 in Chinese with English abstractGoogle Scholar
  63. Zhou GY, Liu SG, Li Z, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417–1417. doi: 10.1126/science.1130168 CrossRefPubMedGoogle Scholar
  64. Zhou Y, Su JQ, Janssens IA, Zhou GS, Xiao CW (2014) Fine root and litterfall dynamics of three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant Soil 374:19–32. doi: 10.1007/s11104-013-1816-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cunguo Wang
    • 1
    • 2
  • Shijie Han
    • 2
  • Yumei Zhou
    • 3
  • Junhui Zhang
    • 2
    • 4
  • Xingbo Zheng
    • 4
  • Guanhua Dai
    • 4
  • Mai-He Li
    • 2
    • 5
  1. 1.College of AgronomyShenyang Agricultural UniversityShenyangChina
  2. 2.State Key Laboratory of Forest and Soil Ecology, Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  3. 3.Shanghai Institute of TechnologyShanghaiChina
  4. 4.Research Station of Changbai Mountain Forest EcosystemsChinese Academy of SciencesAntuChina
  5. 5.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations