Plant and Soil

, Volume 399, Issue 1–2, pp 257–270 | Cite as

Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense

  • A. L. S. Rangel de Souza
  • S. A. De Souza
  • M. V. V. De Oliveira
  • T. M. Ferraz
  • F. A. M. M. A. Figueiredo
  • N. D. Da Silva
  • P. L. Rangel
  • C. R. S. Panisset
  • F. L. Olivares
  • E. Campostrini
  • G. A. De Souza Filho
Regular Article


Background and aims

Gluconacetobacter diazotrophicus is a plant growth-promoting bacteria (PGPB) that colonizes several plant species. Here, we studied the internal colonization of Arabidopsis thaliana tissues by G. diazotrophicus and analyzed its effects on physiology, growth, and activation of plant immune system during such association.


A. thaliana seedlings were inoculated with G. diazotrophicus and grown in substrate for 50 days. Effects on plant growth were estimated by quantifying number of leaves, leaf area, and fresh and dry weight. Endophytic bacterial population was determined by colony-forming unit (CFU), and its location in plant tissues was assayed by epifluorescence microscopy of red fluorescent protein-labeled bacterium. Whole canopy gas exchange (photosynthesis and transpiration) was determined using a portable photosynthesis system.


G. diazotrophicus efficiently promoted A. thaliana plant growth at 50 days after inoculation. Inoculated plants showed higher whole canopy photosynthesis, lower whole plant transpiration, and increased water-use efficiency. The bacterium colonized preferentially root xylem. The inoculation of plants defective in systemic acquired resistance (SAR)-associated defense revealed that plant immune system plays an important role during the early association stages.


G. diazotrophicus endophytically colonizes A. thaliana roots, promotes plant growth, and increases whole canopy photosynthesis. Our results indicate that A. thaliana is useful for molecular studies of the mechanisms involved in the interaction between plants and PGPB, especially those involving G. diazotrophicus.


PGPB Endophytic bacteria BNF Plant defense Plant immunity G.diazotrophicus 



This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Instituto Nacional de Ciências e Tecnologia em Fixação Biológica de Nitrogênio (INCT-FBN). First author received fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES.

Supplementary material

11104_2015_2672_Fig6_ESM.gif (370 kb)
Fig. S1

Comparison of growth promotion by G. diazotrophicus PAL5 strains in A. thaliana plants. Seven-day-old wild-type (Col-0) plants were inoculated with G. diazotrophicus PAL5 wild-type, kanamycin-resistant strain (GD-Kan) and DsRed-expressing strain (GD-F) at a concentration of 106 CFU mL−1. The number of leaves (a), fresh weight of aerial (b), and root parts (c) and the number of bacteria in inoculated roots (d) were determined 50 days post-inoculation (dpi). Twenty plants from each treatment were used for this analysis. These experiments were repeated three times with similar results. Error bars represent the standard deviation. Significant differences between treatments are represented by * (ANOVA, p < 0.05). (GIF 370 kb)

11104_2015_2672_MOESM1_ESM.tif (325 kb)
High resolution image (TIFF 324 kb)
11104_2015_2672_Fig7_ESM.gif (17 kb)
Fig. S2

Effect on plant growth, at 28 dpi, of A. thaliana inoculated with GD-Kan (106 CFU mL−1). The number of leaves (a), total leaf area (b), dry weight of aerial (c) and root (d) parts were determined 28 days post inoculation (dpi). Twenty plants from each treatment were used for these analyses. These experiments were repeated three times with similar results. Error bars represent the standard deviation. Significant differences between treatments are represented by * (ANOVA, p < 0.05). (GIF 17 kb)

11104_2015_2672_MOESM2_ESM.tif (7.8 mb)
High resolution image (TIFF 7938 kb)
11104_2015_2672_Fig8_ESM.gif (25 kb)
Fig. S3

Plant growth promotion by G. diazotrophicus GD-Kan strains in A. thaliana wild-type (Col-0) and NahG lines. Seven-day-old seedlings were inoculated with 106 CFU mL−1 of GD-Kan. At 28 and 50 dpi, dry weight of roots and shoots was the quantified. Twenty plants from each treatment were used for these analyses. Experiments were repeated three times with similar results. Error bars represent the standard deviation. Significant differences between treatments are represented by * (ANOVA, p < 0.05). (GIF 25 kb)

11104_2015_2672_MOESM3_ESM.tif (8 mb)
High resolution image (TIFF 8196 kb)
11104_2015_2672_Fig9_ESM.gif (27 kb)
Table S1

Bacterial concentration in root tissue inoculated with G. diazotrophicus PAL5 kanamycin-resistant strain (GD-Kan) and DsRed expressing strain (GD-F) at 50 days post-inoculation (dpi.) (GIF 27 kb) (GIF 34 kb)

11104_2015_2672_MOESM4_ESM.tif (358 kb)
High resolution image (TIFF 357 kb)
11104_2015_2672_Fig10_ESM.gif (35 kb)
Table S2

Bacterial concentration in the shoots and roots of Col-0 and NahG plants inoculated with G. diazotrophicus PAL5 kanamycin-resistant strain (GD-Kan) at 28 days post-inoculation (dpi.) (GIF 34 kb)

11104_2015_2672_MOESM5_ESM.tif (442 kb)
High resolution image (TIFF 442 kb)


  1. Aertsen A, Tesfazgi Mebrhatu M, Michiels CW (2008) Activation of the Salmonella typhimurium Mrr protein. Biochem Biophys Res Commun 367(2):435–439CrossRefPubMedGoogle Scholar
  2. Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant-Microbe Interact 26:937–945CrossRefPubMedGoogle Scholar
  3. Anitha KG, Thangaraju M (2010) Growth promotion of rice seedling by Gluconacetobacter diazotrophicus under in vivo conditions. J Cell Plant Sci 1:6–12Google Scholar
  4. Baldani JI, Reis VM, Baldani VL, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29(4):417–423CrossRefGoogle Scholar
  5. Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11CrossRefGoogle Scholar
  6. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefPubMedGoogle Scholar
  7. Bertini EV, Peñalver CGN, Leguina AC, Irazusta VP, de Figueroa LI (2014) Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system. Antonie Van Leeuwenhoek 106(3):497–506CrossRefPubMedGoogle Scholar
  8. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209CrossRefPubMedGoogle Scholar
  9. Blanco Y, Blanch M, Piñón D, Legaz ME, Vicente C (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99(4):366–371CrossRefPubMedGoogle Scholar
  10. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569CrossRefPubMedGoogle Scholar
  11. Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65(3):661–670CrossRefPubMedGoogle Scholar
  12. Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133:1–7CrossRefPubMedGoogle Scholar
  13. Caballero-Mellado J, Martinez-Romero E (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl Environ Microbiol 60(5):1532–1537PubMedPubMedCentralGoogle Scholar
  14. Carvalho TLG, Ferreira PCG, Hemerly AS (2011) Sugarcane genetic controls involved in the association with beneficial endophytic nitrogen fixing bacteria. Trop Plant Biol 4:31–41CrossRefGoogle Scholar
  15. Cavalcante VA, Dobereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31CrossRefGoogle Scholar
  16. Cavalcante JJ, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI, Ferreira PC, Hemerly AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686CrossRefPubMedGoogle Scholar
  17. Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cell Dev Plant 42:74–82CrossRefGoogle Scholar
  18. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  19. del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82CrossRefGoogle Scholar
  20. Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250CrossRefPubMedGoogle Scholar
  21. Denecke J, de Rycke R, Botterman J (1992) Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J 11:2345–2355PubMedPubMedCentralGoogle Scholar
  22. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Genet 11:539–548CrossRefGoogle Scholar
  23. dos Santos MF, Muniz de Padua VL, de Matos NE, Hemerly AS, Domont GB (2010) Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets. J Proteome 73:917–931CrossRefGoogle Scholar
  24. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209CrossRefPubMedGoogle Scholar
  25. Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:1–13CrossRefGoogle Scholar
  26. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:7.1–7.25CrossRefGoogle Scholar
  27. Fuentes-Ramírez LE, Jimenez-Salgado T, Abarca-OCampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant Soil 154:145–150CrossRefGoogle Scholar
  28. Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J, Martínez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117–128CrossRefGoogle Scholar
  29. Galisa PS, da Silva HA, Macedo AV, Reis VM, Vidal MS, Baldani JI, Simões-Araújo JL (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91(1):1–7CrossRefPubMedGoogle Scholar
  30. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephen MP, Teixeira KRS, Dobereiner J, de Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364CrossRefGoogle Scholar
  31. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedGoogle Scholar
  32. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42CrossRefPubMedGoogle Scholar
  33. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular Calif Agric Exp Sta 347Google Scholar
  34. Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15:2263–2272CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hunt MG, Rasmussen S, Newton PC, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28(11):1345–1354CrossRefGoogle Scholar
  36. Intorne AC, de Oliveira MV, Lima ML, da Silva JF, Olivares FL, de Souza Filho GA (2009) Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 191:477–483CrossRefPubMedGoogle Scholar
  37. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119CrossRefGoogle Scholar
  38. James E, Reis V, Olivares F, Baldani J, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766CrossRefGoogle Scholar
  39. James EK, Olivares FL, de Oliveira ALM, dos Reis Jr FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760PubMedGoogle Scholar
  40. Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen fixing acetobacteria. Appl Environ Microbiol 63(9):3676–3683PubMedPubMedCentralGoogle Scholar
  41. Kechid M, Desbrosses G, Rokhsi W, Varoquaux F, Djekoun A, Touraine B (2013) The NRT2.5 and NRT2.6 genes are involved in growth promotion of Arabidopsis by the plant growth-promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196. New Phytol 198(2):514–524CrossRefPubMedGoogle Scholar
  42. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):3CrossRefPubMedPubMedCentralGoogle Scholar
  43. Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921CrossRefPubMedGoogle Scholar
  44. Kummu M, de Moel H, Porkka M, Siebert S, Varis O, Ward PJ (2012) Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci Total Environ 438:477–489CrossRefPubMedGoogle Scholar
  45. Lee S, Flores-Encarnación M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lery LMS, Hemerly AS, Nogueira EM, Krüger MAK, Bisch PM (2011) Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact 24:562–576CrossRefPubMedGoogle Scholar
  47. Li R, MacRae IC (1992) Specific identification and enumeration of Acetobucfer diazotrophicus in sugarcane. Soil Biol Biochem 24:413–419CrossRefGoogle Scholar
  48. Li X, Zhang L (2015) Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves. J Hazard Mater 295:79–85CrossRefPubMedGoogle Scholar
  49. Luna MF, Galar ML, Aprea J, Molinari ML, Boiardi JL (2010) Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnol Lett 32:1071–1076CrossRefPubMedGoogle Scholar
  50. Luna MF, Aprea J, Crespo JM, Boiardi JL (2012) Colonization and yield promotion of tomato by Gluconacetobacter diazotrophicus. Appl Soil Ecol 61:225–229CrossRefGoogle Scholar
  51. Maclean AM, Sugio A, Kingdom HN, Grieve VM, Hogenhout SA (2011) Arabidopsis thaliana as a model plant for understanding phytoplasma interactions with plant and insect hosts. Bull Insectol 64(Supplement):S173–S174Google Scholar
  52. Madhaiyan M, Saravanan VS, Jovi DBSS (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159(3):233–243CrossRefPubMedGoogle Scholar
  53. Matiru V, Thomson J (1998) Can Acetobacter diazotrophicus be used as a growth promoter for coffee, tea, and banana plants? In Proc 8th Cong Afric Assoc Biol Nitro Fixat, F. D. Dakora (Eds.) 129–130 University of Cape TownGoogle Scholar
  54. Meenakshisundaram M, Santhaguru K (2010) Isolation and nitrogen fixing efficiency of a novel endophytic diazotroph Gluconacetobacter diazotrophicus associated with Saccharum officinarum from southern district of Tamilnadu. Int J Biol Med Res 1:298–300Google Scholar
  55. Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335CrossRefPubMedGoogle Scholar
  56. Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24:1448–1458CrossRefPubMedGoogle Scholar
  57. Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389CrossRefPubMedGoogle Scholar
  58. Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46(4):454–464CrossRefPubMedGoogle Scholar
  59. Muthukumarasamy R, Revathi G, Vadivelu M (2000) Antagonistic potential of N2-fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went., a causal organism of red-rot of sugarcane. Curr Sci 78:1063–1065Google Scholar
  60. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Ki-Do P, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28(3):277–286CrossRefPubMedGoogle Scholar
  61. Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24(5):533–542CrossRefPubMedGoogle Scholar
  62. O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191CrossRefPubMedPubMedCentralGoogle Scholar
  63. Oliveira AD, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215CrossRefGoogle Scholar
  64. Ouibrahim L, Caranta C (2013) Exploitation of natural genetic diversity to study plant–virus interactions: what can we learn from Arabidopsis thaliana? Mol Plant Pathol 14(8):844–854CrossRefPubMedGoogle Scholar
  65. Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415–432CrossRefGoogle Scholar
  66. Paula MA, Reis VM, Döbereiner J (1991) Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertil Soils 11(2):111–115CrossRefGoogle Scholar
  67. Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94(4):925–929CrossRefGoogle Scholar
  68. Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12(12):564–569CrossRefPubMedGoogle Scholar
  69. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316CrossRefPubMedGoogle Scholar
  70. Pieterse CMJ, Van der Does D, Zamoudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:28.1–28.33CrossRefGoogle Scholar
  71. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:16.1–16.29CrossRefGoogle Scholar
  72. Piñón D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, Solas MT, Legaz ME (2002) Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol 153:345–351CrossRefPubMedGoogle Scholar
  73. Poupin MJ, Timmermann T, Veja A, Zuñiga A, González B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8(7):e69435CrossRefPubMedPubMedCentralGoogle Scholar
  74. Reis VM, Olivares FL, Debereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405CrossRefPubMedGoogle Scholar
  75. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28(9):829–836Google Scholar
  76. Rodrigues Neto J, Malavolta V Jr, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12(1–2):32Google Scholar
  77. Rouws LF, Meneses CH, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330CrossRefPubMedGoogle Scholar
  78. Saravanan VS, Madhaiyan M, Osborne J, Thangaraju M, Sa TM (2007) Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion. Microb Ecol 55:130–140CrossRefPubMedGoogle Scholar
  79. Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Develop 3:77–80Google Scholar
  80. Serrato RV, Meneses CHSG, Vidal MS, Santana-Filho AP, Iacomini M, Sassaki GL, Baldani JI (2013) Structural studies of an exopolysaccharide produced by Gluconacetobacter diazotrophicus PAL5. Carbohydr Polym 98:1153–1159CrossRefPubMedGoogle Scholar
  81. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth. Mol Plant-Microbe Interact 14:358–366CrossRefPubMedGoogle Scholar
  82. Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tapia-Hernández A, Bustillos-Cristales MR, Jiménez-Salgado T, Caballero-Mellado J, Fuentes-Ramírez LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microb Ecol 39(1):49–55CrossRefPubMedGoogle Scholar
  84. Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferriera PCG, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744CrossRefPubMedPubMedCentralGoogle Scholar
  85. Verhage A, Van Wees CMS, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540CrossRefPubMedPubMedCentralGoogle Scholar
  86. Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17(8):895–908CrossRefPubMedGoogle Scholar
  87. Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant–N2-fixing endophytic bacteria association. J Exp Bot 57(3):559–569CrossRefPubMedGoogle Scholar
  88. Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396CrossRefPubMedGoogle Scholar
  89. Windram O, Penfold CA, Denby KJ (2014) Network modeling to understand plant immunity. Annu Rev Phytopathol 52:5.1–5.20CrossRefGoogle Scholar
  90. Yang S, Hua J (2004) A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16:1060–1071CrossRefPubMedPubMedCentralGoogle Scholar
  91. Youssef HH, Fayez M, Monib M, Hegazi N (2004) Gluconacetobacter diazotrophicus: a natural endophytic diazotroph of Nile Delta sugarcane capable of establishing an endophytic association with wheat. Biol Fertil Soils 39(6):391–397CrossRefGoogle Scholar
  92. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150CrossRefPubMedGoogle Scholar
  93. Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive. Plant Cell 15:2636–2646CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhou XJ, Liang Y, Chen H, Shen SH, Jing YX (2006) Effects of rhizobia inoculation and nitrogen fertilization on photosynthetic physiology of soybean. Photosynthetica 44:530–535CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. L. S. Rangel de Souza
    • 1
  • S. A. De Souza
    • 1
  • M. V. V. De Oliveira
    • 1
  • T. M. Ferraz
    • 2
  • F. A. M. M. A. Figueiredo
    • 2
  • N. D. Da Silva
    • 1
  • P. L. Rangel
    • 1
  • C. R. S. Panisset
    • 1
  • F. L. Olivares
    • 3
  • E. Campostrini
    • 2
  • G. A. De Souza Filho
    • 1
  1. 1.Laboratório de BiotecnologiaUniversidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil
  2. 2.Laboratório de Melhoramento Genético VegetalUniversidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil
  3. 3.Laboratório de Biologia Celular e TecidualUniversidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos dos GoytacazesBrazil

Personalised recommendations