Advertisement

Plant and Soil

, Volume 396, Issue 1–2, pp 59–72 | Cite as

Studying the impact of living roots on the decomposition of soil organic matter in two different forestry-drained peatlands

  • M. Linkosalmi
  • J. Pumpanen
  • C. Biasi
  • J. Heinonsalo
  • R. Laiho
  • A. Lindén
  • V. Palonen
  • T. Laurila
  • A. Lohila
Regular Article

Abstract

Background and aims

Forestry drainage is the main management practice of peatlands in Finland. The influence of drainage and management on carbon (C) fluxes may vary, e.g., depending on the original peatland type. We have studied C fluxes in two forestry-drained peatlands with different nutrient status.

Methods

Our hypothesis that the differences in the C balance between these two sites can be attributed to differences in soil respiration rates, and in particular to the priming effect, was tested with laboratory microcosm flux measurements and 14C isotopic partitioning method. A two-pool mixing-model based on the natural difference in the respired 14CO2 between the peat and plants was employed.

Results

We found no statistically significant priming effect in either nutrient-poor or nutrient-rich soil, respectively.

Conclusions

As no differences in priming effect were found, we can conclude that the nutrient status of the sites does not affect the priming effect in the peat soils studied here, thus our results suggest that organic soils do not support priming to the same extent as mineral soils.

Keywords

Peat soil Priming effect Radiocarbon dating SOM decomposition Microcosm Pine seedling 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Maj and Tor Nessling foundation and by the European Commission through the project GHG Europe (244122). J. Pumpanen, A. Lindén and J. Heinonsalo were supported by the Academy of Finland research 130984, 218094, 255576 and 263858 as well as by the Academy of Finland Centre of Excellence Program. The study was further financially supported by the Academy of Finland research 132045 (granted to C. Biasi). We also thank Aki Tsuruta (Finnish Meteorological Institute) for valuable statistical assistance.

Compliance with ethical standards

We ensure the quality and integrity of this research. We have followed the good scientific practice as formulated in international standards for authors, developed at the 2nd World Conference on Research Integrity in Singapore in July 2010. The implementation did not require statement by an ethics committee, by the Committee on Animal Experimentation or any corresponding statement or permit. Furthermore, the research is independent and impartial and no results were published before.

References

  1. Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181. doi: 10.2307/176901 CrossRefGoogle Scholar
  2. Baggs EM (2006) Partitioning the components of soil respiration: a research challenge. Plant Soil 284:1–5. doi: 10.1007/s11104-006-0047-7 CrossRefGoogle Scholar
  3. Basiliko N, Stewart H, Roulet NT, Moore TR (2012) Do root exudates enhance peat decomposition? Geomicrobiol J 29:374–378. doi: 10.1080/01490451.2011.568272 CrossRefGoogle Scholar
  4. Berglund K (1996) Cultivated organic soils in Sweden: properties and amelioration. Dissertation, Department of Soil Science, Swedish Agriculture University Report 28Google Scholar
  5. Biasi C, Tavi NM, Jokinen S, Shurpali N, Hämäläinen K, Jungner H, Oinonen M, Martikainen PJ (2011) Differentiating sources of CO2 from organic soil under bioenergy crop cultivation: a field-based approach using 14C. Soil Biol Biochem 43:2406–2409. doi: 10.1016/j.soilbio.2011.08.00 CrossRefGoogle Scholar
  6. Biasi C, Pitkämäki A, Tavi N, Koponen H, Martikainen PJ (2012) An isotope approach based on 13C pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatland. Boreal Environ Res 17:184–192Google Scholar
  7. Biasi C, Jokinen S, Marushchak ME, Hämäläinen K, Trubnikova T, Oinonen M, Martikainen PJ (2014) Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems 17:112–126. doi: 10.1007/s10021-013-9710-z CrossRefGoogle Scholar
  8. Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4. doi:  10.3389/fmicb.2013.00216
  9. Ekblad A, Nordgren A (2002) Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability? Plant Soil 242:115–122. doi: 10.1023/A:1019698108838 CrossRefGoogle Scholar
  10. Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi: 10.1111/j.1461-0248.2004.00579.x CrossRefGoogle Scholar
  11. Fry B 2006 Stable Isotope Ecology. Springer ISBN 978-0-387-30513-4Google Scholar
  12. Gaudinski J, Trumbore S, Davidson E, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69. doi: 10.1023/A:1006301010014 CrossRefGoogle Scholar
  13. Göttlicher SG, Steinmann K, Betson NR, Högberg P (2006) The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94. doi: 10.1007/s11104-006-0062-8 CrossRefGoogle Scholar
  14. Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Appl Soil Ecol 46:436–442. doi: 10.1016/j.apsoil.2010.09.006 CrossRefGoogle Scholar
  15. Hahn V, Högberg P, Buchmann N (2006) 14C - a tool for separation of autotrophic and heterotrophic soil respiration. Glob Chang Biol 12:972–982. doi: 10.1111/j.1365-2486.2006.001143.x CrossRefGoogle Scholar
  16. Hämäläinen K, Fritze H, Jungner H, Karhu K, Oinonen M, Sonninen E, Spetz P, Tuomi M, Vanhala P, Liski J (2010) Molecular sieve sampling of CO2 from decomposition of soil organic matter for AMS radiocarbon measurements. Nucl Instrum Meth B 268:1067–1069. doi: 10.1016/j.nimb.2009.10.099 CrossRefGoogle Scholar
  17. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146CrossRefGoogle Scholar
  18. Hardie SML, Garnett MH, Fallick AE, Rowland AP, Ostle NJ, Flowers TH (2011) Abiotic drivers and their interactive effect on the flux and carbon isotope (C-14 and delta C-13) composition of peat-respired CO2. Soil Biol Biochem 43:2432–2440. doi: 10.1016/j.soilbio.2011.08.010 CrossRefGoogle Scholar
  19. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. doi: 10.1038/nature06591 CrossRefPubMedGoogle Scholar
  20. Heinonsalo J, Jørgensen KS, Sen R (2001) Microcosm-based analyses of Scots pine seedling growth, ectomycorrhizal fungal community structure and bacterial carbon utilization profiles in boreal forest humus and underlying illuvial mineral horizons. FEMS Microbiol Ecol 36:73–84. doi: 10.1016/S0168-6496(01)00120-9 CrossRefPubMedGoogle Scholar
  21. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554. doi: 10.1016/j.tree.2006.06.004 CrossRefPubMedGoogle Scholar
  22. Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Chang Biol 13:491–510. doi: 10.1111/j.1365-2486.2006.01312.x CrossRefGoogle Scholar
  23. Kuzyakov Y (2002) Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods. Soil Biol Biochem 34:1621–1631. doi: 10.1016/S0038-0717(02)00146-3 CrossRefGoogle Scholar
  24. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi: 10.1016/j.soilbio.2005.08.020 CrossRefGoogle Scholar
  25. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371CrossRefGoogle Scholar
  26. Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925. doi: 10.1016/S0038-0717(01)00117-1 CrossRefGoogle Scholar
  27. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498CrossRefGoogle Scholar
  28. Kuzyakov Y, Hill P, Jones D (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305. doi: 10.1007/s11104-006-9162-8 CrossRefGoogle Scholar
  29. Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024. doi: 10.1016/j.soilbio.2006.02.017 CrossRefGoogle Scholar
  30. Laiho R, Sallantaus T, Laine J (1999) The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207:169–181. doi: 10.1023/A:1026470212735 CrossRefGoogle Scholar
  31. Laiho R, Vasander H, Penttilä T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Glob Biogeochem Cytol 17(2):1–11. doi: 10.1029/2002GB002015 Google Scholar
  32. Lindén A, Heinonsalo J, Buchmann N, Oinonen M, Sonninen E, Hilasvuori E, Pumpanen J (2014) Contrasting effects of increased carbon input on boreal SOM decomposition with and without presence of living root system of P. sylvestris L. Plant Soil 377:145–158. doi: 10.1007/s11104-013-1987-3 CrossRefGoogle Scholar
  33. Lohila A, Minkkinen K, Aurela M, Tuovinen J-P, Penttilä T, Ojanen P, Laurila T (2011) Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8:3203–3218. doi: 10.5194/bg-8-3203-2011 CrossRefGoogle Scholar
  34. Lohila A, Minkkinen K, Penttilä T, Launiainen S, Koskinen M, Ojanen P, Laurila T (2014) Contrasting impact of forestry-drainage on CO2 balance at two adjacent peatlands in Finland Geophysical Research Abstracts 16 (EGU2014-11392)Google Scholar
  35. Luo Y, Weng E (2011) Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol Evol 26:96–104. doi: 10.1016/j.tree.2010.11.003 CrossRefPubMedGoogle Scholar
  36. Maljanen M, Sigurdsson BD, Guðmundsson J, Óskarsson JH, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries - present knowledge and gaps. Biogeosciences 7:2711–2738. doi: 10.5194/bg-7-2711-2010 CrossRefGoogle Scholar
  37. Minkkinen K, Laine J (1998) Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J For Res 28:1267–1275CrossRefGoogle Scholar
  38. Minkkinen K, Vasander H, Jauhiainen S, Karsisto M, Laine J (1999) Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire Central Finland. Plant Soil 207:107–120CrossRefGoogle Scholar
  39. Minkkinen K, Laine J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T (2007) Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–126Google Scholar
  40. Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20. doi: 10.1017/S0376892902000024 CrossRefGoogle Scholar
  41. Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatland. For Ecol Manag 289:201–208. doi: 10.1016/j.foreco.2012.10.008 CrossRefGoogle Scholar
  42. Ojanen P, Lehtonen A, Heikkinen J, Penttilä T, Minkkinen K (2014) Soil CO2 balance and its uncertainty in forestry-drained peatlands in Finland. For Ecol Manag 325:60–73. doi: 10.1016/j.foreco.2014.03.049 CrossRefGoogle Scholar
  43. Palonen V, Oinonen M (2013) Molecular sieves in 14CO2 sampling and handling. Radiocarbon 55:416–420. doi: 10.2458/azu_js_rc.55.16335 CrossRefGoogle Scholar
  44. Paterson E, Midwood AJ, Millard P (2009) Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytol 184:19–33. doi: 10.1111/j.1469-8137.2009.03001.x CrossRefPubMedGoogle Scholar
  45. Peltoniemi K, Fritze H, Laiho R (2009) Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biol Biochem 41:1902–1914. doi: 10.1016/j.soilbio.2009.06.018 CrossRefGoogle Scholar
  46. Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T, Laiho R (2012) How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biol Biochem 51:20–34. doi: 10.1016/j.soilbio.2012.04.013 CrossRefGoogle Scholar
  47. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179CrossRefPubMedGoogle Scholar
  48. Pitkänen A, Turunen J, Tahvanainen T, Simola H (2013) Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories. Boreal Environ Res 18:223–234Google Scholar
  49. Pumpanen J, Heinonsalo J, Rasilo T, Hurme K, Ilvesniemi H (2009) Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and 14C pulse labelling in laboratory conditions. Trees - Struct Funct 23:611–621. doi: 10.2136/sssaj2007.0199 CrossRefGoogle Scholar
  50. Rydin H, Jeglum K (2006) The Biology of peatlands (ed. Rydin H, Jeglum K) Oxford University Press. ISBN-13: 978–0–19–852872–2Google Scholar
  51. Scheffer RA, Aerts R (2000) Root decomposition and soil nutrient and carbon cycling in two temperate fen ecosystems. Oikos 91:541–549. doi: 10.1034/j.1600-0706.2000.910316.x CrossRefGoogle Scholar
  52. Simola H, Pitkänen A, Turunen J (2012) Carbon loss in drained forestry peatlands in Finland, estimated by re-sampling peatlands surveyed in the 1980s. Eur J Soil Sci 63:798–807CrossRefGoogle Scholar
  53. Stén C-G (1998) The mires and usefulness of peat in Tammela, southern Finland (in Finnish, abstract in English). Report of peat investigation 314. Geological Survey of FinlandGoogle Scholar
  54. Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335:501–520. doi: 10.1007/s11104-010-0447-6 CrossRefGoogle Scholar
  55. Subke J-A, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between litter decomposition and rhizosphere activity. Oecologia 139:551–559. doi: 10.1007/s004422-004-1540-4 CrossRefPubMedGoogle Scholar
  56. Subke J, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12:921–943. doi: 10.1111/j.1365-2486.2006.01117.x CrossRefGoogle Scholar
  57. Sullivan BW, Hart SC (2013) Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biol Biochem 58:293–301. doi: 10.1016/j.soilbio.2012.12.007 CrossRefGoogle Scholar
  58. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411. doi: 10.2307/2641102 CrossRefGoogle Scholar
  59. Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153. doi: 10.1111/j.1365-2486.2006.01067.x CrossRefGoogle Scholar
  60. van Huissteden J, van den Bos R, Alvarez IM (2006) Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 851:3–18Google Scholar
  61. Zimmerman AR, Bao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi: 10.1016/j.soilbio.2011.02.005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Linkosalmi
    • 1
  • J. Pumpanen
    • 2
  • C. Biasi
    • 3
  • J. Heinonsalo
    • 4
  • R. Laiho
    • 5
  • A. Lindén
    • 2
  • V. Palonen
    • 6
  • T. Laurila
    • 1
  • A. Lohila
    • 1
  1. 1.Finnish Meteorological Institute, Atmospheric Composition ResearchHelsinkiFinland
  2. 2.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Environmental ScienceUniversity of Eastern FinlandKuopioFinland
  4. 4.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Natural Resources Institute FinlandParkanoFinland
  6. 6.Department of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations