Plant and Soil

, Volume 396, Issue 1–2, pp 201–213 | Cite as

The southern South American Proteaceae, Embothrium coccineum exhibits intraspecific variation in growth and cluster-root formation depending on climatic and edaphic origins

  • Alejandra Zúñiga-Feest
  • Mabel Delgado
  • Angela Bustos-Salazar
  • Valeria Ochoa
Regular Article


Background and aims

Cluster root (CR) functioning has been studied mainly in Proteaceae species from (P)-deficient old soils. However, in southern South America, six species occur in young P rich soils. The aims were: i) to study the growth and CR formation of Embothrium coccineum seedlings from populations contrasting in edaphic and climatic conditions and, ii) to study the effect of P availability on CR formation.


Seedlings were grown from seeds collected from nine Chilean populations of E. coccineum (36° to 45° S). After 9 months in a nursery, CR formation and growth were determined. Additionally, seedlings from the two populations at the extreme ends of the distribution were maintained on sand and watered with nutrient solutions including or excluding P.


All seedlings showed CR formation at 4 months old; however, CR allocation differed in that it was lower in plants from the north versus from the south. CR in seedlings from Curacautín (38°) were suppressed when P supply increased, though this was not seen in seedlings from Coyhaique (45°).


Results suggest local root adaptation related to both climatic and edaphic conditions. We hypothesize that these features could favor Proteaceae persistence in southern South American ecosystems.


Cluster roots Phosphorus Plasticity Volcanic soils 



The authors would like to thank the Chilean Science Council FONDECYT grants N° 1130440 and 11080162 (Zúñiga-Feest A.) for support this research. Besides, we give thanks to FONDECYT Postdoctoral research N°3150187 and CONICYT N° 21140737 (PhD scholarship)/CONICYT/FONDAP 15110009 for funding these two young researchers: Delgado M. and Bustos-Salazar A., respectively. Also, we would like to thank Dr. Hans Lambers and Dr. Peterson who provided important comments to improve this manuscript. Finally, we thank Viveros Bosques del Sur, Instituto de Ciencias Ambientales y Evolutivas for greenhouse facilities, Alejandro Vera, Dra. Frida Piper, and Dr. Luis Corcuera for seed collection facilities in the field.


  1. Alberdi M (1995) Ecofisiología de especies leñosas de los bosques hidrófilos templados de Chile:Resistencia a la sequía y bajas temperaturas. In: J Armesto, C Villagrán, M Kalin-Arroyo (eds) Ecología de los bosques nativos de Chile. Universitaria, ChileGoogle Scholar
  2. Alberdi M, Donoso C (2004) Variación en Embothrium coccineum J.R. et G.Forster (notro o ciruelillo). In: C Donoso, A Premoli, L Gallo, F Ipinza (eds) Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Universitaria, Santiago, ChileGoogle Scholar
  3. Alberdi M, Reyes-Diaz M, Zúñiga R, Hess S, Bravo LA, Corcuera LJ (2009) Photochemical efficiency of PSII and photoprotective pigments in seedlings and adults of two Proteaceae with different shade tolerance from the Chilean temperate rain forest. Rev Chil Hist Nat 82:387–402CrossRefGoogle Scholar
  4. Armesto J, Villagrán C, Arroyo MK (1996) Ecología de los bosques nativos de Chile, Santiago, ChileGoogle Scholar
  5. Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. J Biogeogr 34:2012–2027. doi: 10.1111/j.1365-2699.2007.01749.x CrossRefGoogle Scholar
  6. Barrow NJ (1977) Phosphorus uptake and utilization by tree seedlings. Aust J Bot 25:571–584CrossRefGoogle Scholar
  7. Bertrand S, Fagel N (2008) Nature, origin, transport and deposition of andosol parent material in south-central Chile (36–42°S). Catena 73:10–22. doi: 10.1016/j.catena.2007.08.003 CrossRefGoogle Scholar
  8. Bustos A (2011) Efecto de la intensidad lumínica en el crecimiento de plántulas de Embothrium coccineum en procedencias contrastantes; una aproximación morfológica, fisiológica y genética. Ciencias Agrarias. Universidad Austral de Chile, ValdiviaGoogle Scholar
  9. Cavieres L, Arroyo MK (2000) Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae) – altitudinal variation in the mediterranean Andes of central Chile. Plant Ecol 149:1–8. doi: 10.1023/a:1009802806674 CrossRefGoogle Scholar
  10. Delgado M, Zúñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. et J. Forst.). Plant Soil 373:765–773. doi: 10.1007/s11104-013-1829-3 CrossRefGoogle Scholar
  11. Delgado M, Suriyagoda L, Zúñiga-Feest A, Borie F, Lambers H (2014) Divergent functioning of Proteaceae species: the South American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366. doi: 10.1111/1365-2435.12303 CrossRefGoogle Scholar
  12. Donoso C (2006) Las especies arbóreas de los bosques templados de Chile y Argentina, Autoecología. Marisa Cúneo Ediciones, ValdiviaGoogle Scholar
  13. Drummond L, Maher M (1995) Determination of phosphorus in aqueous solution via formation of the phosphoantimonylmolybdenum blue complex. Re-examination of optimum conditions for the analysis of phosphate. Anal Chim Acta 302:69–74CrossRefGoogle Scholar
  14. Dzierma Y, Wehrmann H (2010) Eruption time series statistically examined: probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 193:82–92. doi: 10.1016/j.jvolgeores.2010.03.009 CrossRefGoogle Scholar
  15. Escobar E, Donoso C, Souto C, Alberdi M, Zúñiga A (2006) Embothrium coccineum J.R. et. G. Foster. In: Donoso C (ed) Las Especies Arbóreas de los Bosques Templados de Chile y Argentina Autoecología. Marisa Cuneo, ValdiviaGoogle Scholar
  16. Fernández-Pascual E, Jimenez-Alfaro B, Caujape-Castells J, Jaen-Molina R, Diaz TE (2013) A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Ann Bot 112:937–945. doi: 10.1093/aob/mct154 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Ferrada P (2009) Determinación de polimorfismo e identificación de haplotipos en Gevuina avellana y Embothrium coccineum (Magnoliopsida: Proteaceae), especies nativas de Chile, usando marcadores moleculares en cpDNA. Facultad de Ciencias. Universidad Austral de Chile, ValdiviaGoogle Scholar
  18. Figueroa JA, Lusk CH (2001) Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol 152:483–489CrossRefGoogle Scholar
  19. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810CrossRefGoogle Scholar
  20. Grinbergs J, Valenzuela E, Ramírez C (1987) Formation and development of proteoid roots in Gevuina avellana Mol. Seedlings Agro Sur 15:1–9Google Scholar
  21. Groom PK, Lamont BB (2010) Phosphorus accumulation in Proteaceae seeds: a synthesis. Plant Soil 334:61–72. doi: 10.1007/s11104-009-0135-6 CrossRefGoogle Scholar
  22. Grubb PJ, Bellingham PJ, Kohyama TS, Piper FI, Valido A (2013) Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide. Biol Rev Camb Philos Soc 88:701–744. doi: 10.1111/brv.12029 CrossRefPubMedGoogle Scholar
  23. Heusser CJ (1990) Ice age vegetation and climate of subtropical Chile. Palaeogeogr Palaeoclimatol Palaeoecol 80:107–127. doi: 10.1016/0031-0182(90)90124-P CrossRefGoogle Scholar
  24. Holm S-O (1994) Reproductive patterns of Betula pendula and B. pubescens coll. along a regional altitudinal gradient in northern Sweden. Ecography 17:60–72. doi: 10.1111/j.1600-0587.1994.tb00077.x CrossRefGoogle Scholar
  25. Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86. doi: 10.1007/s11104-009-0068-0 CrossRefGoogle Scholar
  26. Johnson LAS, Briggs BG (1975) On the Proteaceae—the evolution and classification of a southern family. Bot J Linn Soc 70:83–182. doi: 10.1111/j.1095-8339.1975.tb01644.x CrossRefGoogle Scholar
  27. Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martínez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122CrossRefGoogle Scholar
  28. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713. doi: 10.1093/aob/mcl114 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  30. Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31. doi: 10.1007/s11104-010-0444-9 CrossRefGoogle Scholar
  31. Lambers H, Bishop JG, Hopper SD, Laliberté E, Zuniga-Feest A (2012) Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann Bot 110:329–348. doi: 10.1093/aob/mcs130 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Lambers H, Clode P, Hawkins HJ, Lambers H, Clode P, Hawkins HJ EL, Oliveira RS, Reddell P, Shane SW MS, Weston P (2015) Chapter 11. Metabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availability. In: Plaxton WC, Lambers H (eds) Phosphorus metabolism in plants in the post-genomic era: from gene to ecosystem. Wiley-Blackwell Publishing, ChicesterGoogle Scholar
  33. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean south Africa and western Australia. Bot Rev 48:597–689CrossRefGoogle Scholar
  34. Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19CrossRefGoogle Scholar
  35. Latsague M, Sáez P, Coronado L (2010) Tratamientos pregerminativos para Myrceugenia exsucca (Myrtaceae). Bosque 3:243–246CrossRefGoogle Scholar
  36. Naranjo JA, Stern CR (1998) Holocene explosive activity of Hudson Volcano, southern Andes. Bull Volcanol 59:291–306. doi: 10.1007/s004450050193 CrossRefGoogle Scholar
  37. Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382CrossRefGoogle Scholar
  38. Novoa R, Villaseo S, Del Lauto P, Rovanet J, Sierra C, Del Pozo A (1989) Mapa agroclimático de Chile. Instituto de investigaciones agropecuariasGoogle Scholar
  39. Pate JS, Verboom WH, Galloway PD (2001) TURNER REVIEW No. 4 Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560CrossRefGoogle Scholar
  40. Paungfoo-Lonhienne C, Lonhienne TG, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. PNAS 105:4524–4529. doi: 10.1073/pnas.0712078105 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Piper FI, Baeza G, Zuniga-Feest A, Fajardo A (2013) Soil nitrogen, and not phosphorus, promotes cluster-root formation in a South American Proteaceae, Embothrium coccineum. Am J Bot 100:2328–2338. doi: 10.3732/ajb.1300163 CrossRefPubMedGoogle Scholar
  42. Prance GT, Plana V (1998) The American Proteaceae. Aust Syst Bot 11:287–299CrossRefGoogle Scholar
  43. Pujana RR (2007) New fossil woods of Proteaceae from the Oligocene of southern Patagonia. Aust Syst Bot 20:119–125CrossRefGoogle Scholar
  44. Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50CrossRefGoogle Scholar
  45. Ramírez C, Grinbergs J, Valenzuela J, San Martin C (1990) Influencia de las raíces proteiformes en plántulas de Gevuina avellana Mol. Bosque 11:11–20CrossRefGoogle Scholar
  46. Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems. Geoderma 145:216–221. doi: 10.1016/j.geoderma.2008.03.007 CrossRefGoogle Scholar
  47. Rodriguez R, Matthei O, Quezada M (1983) Flora arbórea de Chile. Biblioteca de recursos renovables y no renovables de Chile. Editorial Universidad de Concepción, ConcepciónGoogle Scholar
  48. Romero EJ (1986) Paleogene phytogeography and climatology of South America. Ann Mol Bot 73:449–461CrossRefGoogle Scholar
  49. Rovere AE, Premoli AC (2005) Dispersión asimétrica de semillas de Embothrium coccineum (Proteaceae) en el bosque templado de Chiloé, Chile. Ecol Austral 15:1–7Google Scholar
  50. Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165CrossRefGoogle Scholar
  51. Segura-Uauy A (1999) Sucesión vegetal en depósitos volcánicos del sur de Chile: una aproximación experimental a dos escalas espaciales. Pontificia Universidad Católica de Chile, SantiagoGoogle Scholar
  52. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125. doi: 10.1007/s11104-004-2725-7 CrossRefGoogle Scholar
  53. Shane MW, Lambers H (2006) Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’. J Exp Bot 57:413–423. doi: 10.1093/jxb/erj004 CrossRefPubMedGoogle Scholar
  54. Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004a) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560. doi: 10.1104/pp. 103.035659 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Shane MW, Szota C, Lambers H (2004b) A root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae). Plant Cell Environ 27:991–1004CrossRefGoogle Scholar
  56. Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot 85:901–908CrossRefGoogle Scholar
  57. Souto CP, Premoli AC (2007) Genetic variation in the widespread Embothrium coccineum (Proteaceae) endemic to Patagonia: effects of phylogeny and historical events. Aust J Bot 55:809–817. doi: 10.1071/bt06183 CrossRefGoogle Scholar
  58. Souto CP, Premoli AC, Reich PB (2009) Complex bioclimatic and soil gradients shape leaf trait variation in Embothrium coccineum (Proteaceae) among austral forests in Patagonia. Rev Chil Hist Nat 82:209–222CrossRefGoogle Scholar
  59. Tosso J (1985) Suelos volcánicos de Chile. Instituto de Investigaciones AgropecuariasGoogle Scholar
  60. Veblen TT, Ashton DH (1978) Catastrophic influences on the vegetation of the Valdivian Andes. Vegetario 36:149–167CrossRefGoogle Scholar
  61. Villagrán C (2001) Un modelo de la historia de la vegetación de la Cordillera de La Costa de Chile central-sur: la hipótesis glacial de Darwin. Rev Chil Hist Nat 74:793–803CrossRefGoogle Scholar
  62. Zúñiga-Feest A, Delgado M, Reyes-Diaz M, Ochoa V (2009) Variación estacional del crecimiento, contenido interno de fósforo y exudación de ácidos en raíces proteoídeas en la especie pionera, Embothrium coccineum ( J. Forst.) Proteaceae. In: Actas LD (ed) XI Congreso nacional de la ciencia del suelo, Chillán, ChileGoogle Scholar
  63. Zúñiga-Feest A, Delgado M, Alberdi M (2010) The effect of phosphorus on growth and cluster-root formation in the Chilean Proteaceae: Embothrium coccineum (R. et J. Forst.). Plant Soil 334:113–121. doi: 10.1007/s11104-010-0419-x CrossRefGoogle Scholar
  64. Zúñiga-Feest A, Delgado M, Bustos A (2014) Chapter 16: Cluster roots. In: Morte A, Varma A. (eds) Root engineering: basic and applied concepts. Springer, BerlinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alejandra Zúñiga-Feest
    • 1
  • Mabel Delgado
    • 1
  • Angela Bustos-Salazar
    • 2
    • 3
  • Valeria Ochoa
    • 1
  1. 1.Laboratorio de Biología Vegetal, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.Escuela de Graduados, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Center for Climate and Resilience Research (CR)SantiagoChile

Personalised recommendations