Plant and Soil

, Volume 397, Issue 1–2, pp 17–30 | Cite as

Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth

  • E. P. Brinkman
  • H. Duyts
  • G. Karssen
  • C. D. van der Stoel
  • W. H. van der Putten
Regular Article



Coastal sand dunes have a well-established abiotic gradient from beach to land and a corresponding spatial gradient of plant species representing succession in time. Here, we relate the distribution of plant-feeding nematodes with dominant plant species in the field to host specialization and impacts on plant species under controlled greenhouse conditions.


We assessed plant-feeding nematodes in soil and roots of six plant species that dominate the vegetation at successional positions along the gradient. In controlled conditions, we determined performance of all plant-feeding nematodes on each plant species and their effects on plant biomass.


Specialist feeding type nematodes were confined to plant species in either foredunes or landward dunes. Generalist feeding type nematodes were found in highest numbers in the landward dunes. Most tested nematode species decreased root, but not shoot or rhizome biomass.


Host plant suitability determined occurrence of some plant-feeding nematodes in dunes, but abiotic and biotic soil conditions may play a role as well. Generalist feeding type nematodes were able to reproduce on all plant species. Feeding specialists, which are more protected by plant roots, might prefer host plants in the foredunes for the same reason as their host plants: to escape from natural enemies.


Ammophila arenaria Ectoparasite Endoparasite Foredune Generalist Specialist 



(ratio of final to initial population size)



We thank Sven-Erik Burger and André Kamp for assistance with the greenhouse experiments. The former Water and Civil Board ‘De Brielse Dijkring’ kindly permitted to sample their terrains. This is NIOO-KNAW publication 5821.


  1. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, OxfordGoogle Scholar
  2. Bezemer TM, Fountain MT, Barea JM, Christensen S, Dekker SC, Duyts H, van Hal R, Harvey JA, Hedlund K, Maraun M, Mikola J, Mladenov AG, Robin C, de Ruiter PC, Scheu S, Setälä H, Šmilauer P, van der Putten WH (2010) Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology 91:3027–3036CrossRefPubMedGoogle Scholar
  3. Boag B, Neilson R (1996) Distribution and ecology of Rotylenchus and Pararotylenchus (Nematoda: Hoplolaimidae) in Great Britain. Nematologica 42:96–108CrossRefGoogle Scholar
  4. Bongers T (1988) De nematoden van Nederland. Pirola, Schoorl, The NetherlandsGoogle Scholar
  5. Brinkman EP, van Veen JA, van der Putten WH (2004) Endoparasitic nematodes reduce multiplication of ectoparasitic nematodes, but do not prevent growth reduction of Ammophila arenaria (L.) Link (marram grass). Appl Soil Ecol 27:65–75CrossRefGoogle Scholar
  6. Brinkman EP, Duyts H, van der Putten WH (2005) Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos 110:417–427CrossRefGoogle Scholar
  7. Brinkman EP, Duyts H, van der Putten WH (2008) Interactions between root-feeding nematodes depend on plant species identity. Soil Biol Biochem 40:2186–2193. doi: 10.1016/j.soilbio.2008.01.023 CrossRefGoogle Scholar
  8. Clapp JP, van der Stoel CD, van der Putten WH (2000) Rapid identification of cyst (Heterodera spp., Globodera spp.) and root-knot (Meloidogyne spp.) nematodes on the basis of ITS2 sequence variation detected by PCR-single-strand conformational polymorphism (PCR-SSCP) in cultures and field samples. Mol Ecol 9:1223–1232CrossRefPubMedGoogle Scholar
  9. Costa SR, Kerry BR, Bardgett RD, Davies KG (2012) Interactions between nematodes and their microbial enemies in coastal sand dunes. Oecologia 170:1053–1066. doi: 10.1007/s00442-012-2359-z CrossRefPubMedGoogle Scholar
  10. Davis LT, Bell NL, Watson RN, Rohan TC (2004) Host range assessment of Helicotylenchus pseudorobustus (Tylenchida : Hoplolaimidae) on pasture species. J Nematol 36:487–492PubMedPubMedCentralGoogle Scholar
  11. De Boer W, Klein Gunnewiek PJA, Woldendorp JW (1998) Suppression of hyphal growth of soil-borne fungi by dune soils from vigorous and declining stands of Ammophila arenaria. New Phytol 138:107–116CrossRefGoogle Scholar
  12. de la Peña E, Moens M, van Aelst A, Karssen G (2006a) Description of Pratylenchus dunensis sp n. (Nematoda : Pratylenchidae), a root-lesion nematode associated with the dune grass Ammophila arenaria (L.) Link. Nematology 8:79–88. doi: 10.1163/156854106776179917 CrossRefGoogle Scholar
  13. de la Peña E, Rodríguez Echeverría S, van der Putten WH, Freitas H, Moens M (2006b) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840CrossRefPubMedGoogle Scholar
  14. de la Peña E, Vandegehuchte M, Bonte D, Moens M (2008) Analysis of the specificity of three root-feeders towards grasses in coastal dunes. Plant Soil 310:113–120. doi: 10.1007/s11104-008-9636-y CrossRefGoogle Scholar
  15. Doing H (1985) Coastal fore-dune zonation and succession in various parts of the world. Vegetatio 61:65–75. doi: 10.1007/bf00039811 CrossRefGoogle Scholar
  16. Erb M, Lu J (2013) Soil abiotic factors influence interactions between belowground herbivores and plant roots. J Exp Bot 64:1295–1303. doi: 10.1093/jxb/ert007 CrossRefPubMedGoogle Scholar
  17. Hol WHG, de la Peña E, Moens M, Cook R (2007) Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic Appl Ecol 8:500–509. doi: 10.1016/j.baae.2006.09.013 CrossRefGoogle Scholar
  18. Hope-Simpson JF, Jefferies RL (1966) Observations relating to vigour and debility in marram grass (Ammophila arenaria (L.) Link). J Ecol 54:271–275CrossRefGoogle Scholar
  19. Huiskes AHL (1979) Biological flora of the British isles: Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.: Calamagrostis arenaria (L.) Roth). J Ecol 67:363–382CrossRefGoogle Scholar
  20. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. doi: 10.1111/mpp.12057 CrossRefPubMedGoogle Scholar
  21. Karssen G, Van Aelst A, Cook R (1998a) Redescription of the root-knot nematode Meloidogyne maritima Jepson, 1987 (Nematoda : Heteroderidae), a parasite of Ammophila arenaria (L.) Link. Nematologica 44:241–253CrossRefGoogle Scholar
  22. Karssen G, Van Aelst A, van der Putten WH (1998b) Meloidogyne duytsi n. sp. (Nematoda : Heteroderidae), a root- knot nematode from Dutch coastal foredunes. Fundam Appl Nematol 21:299–306Google Scholar
  23. Karssen G, Waeyenberge L, Moens M (2000) Pratylenchus brzeskii sp nov (Nematoda : Pratylenchidae), a root-lesion nematode from European coastal dunes. Ann Zool 50:255–261Google Scholar
  24. Little LR, Maun MA (1997) Relationships among plant-parasitic nematodes, mycorrhizal fungi and the dominant vegetation of a sand dune system. Ecoscience 4:67–74Google Scholar
  25. Loof PAA (1963) A new species of Telotylenchus (Nematoda: Tylenchida). Nematologica 9:76–80CrossRefGoogle Scholar
  26. Loof PAA (1984) Hemicycliophora species from Iran (Nematoda: Criconematoidea). Nematologica 30:22–41CrossRefGoogle Scholar
  27. Mateille T, Tavoillot J, Martiny B, Fargette M, Chapuis E, Baudouin M, Dmowska E, Bouamer S (2011) Plant-associated nematode communities in West-palearctic coastal foredunes may relate to climate and sediment origins. Appl Soil Ecol 49:81–93. doi: 10.1016/j.apsoil.2011.06.012 CrossRefGoogle Scholar
  28. Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. In: VanAlfen NK, Bruening G, Leach JE (eds) Annual Review of Phytopathology, Vol 48, vol 48. Annual Review of Phytopathology. pp 371–394. doi: 10.1146/annurev-phyto-073009-114439
  29. Nico AI, Rapoport HF, Jiménez-Díaz RM, Castillo P (2002) Incidence and population density of plant-parasitic nematodes associated with olive planting stocks at nurseries in Southern Spain. Plant Dis 86:1075–1079CrossRefGoogle Scholar
  30. Nkem JN, Virginia RA, Barrett JE, Wall DH, Li G (2006) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651. doi: 10.1007/s00300-005-0101-6 CrossRefGoogle Scholar
  31. Oostenbrink M (1960) Estimating nematode populations by some selected methods. In: Sasser JN, Jenkins WR (eds) Nematology. The University of North Carolina Press, Chapel Hill, pp 85–102Google Scholar
  32. Oremus PAI, Otten H (1981) Factors affecting growth and nodulation of Hippophaë rhamnoides L. ssp. rhamnoides in soils from two successional stages of dune formation. Plant Soil 63:317–331CrossRefGoogle Scholar
  33. Perry RN, Moens M (2006) Plant nematology. CABI Publishing, WallingfordCrossRefGoogle Scholar
  34. Piśkiewicz AM, Duyts H, van der Putten WH (2008) Multiple species-specific controls of root-feeding nematodes in natural soils. Soil Biol Biochem 40:2729–2735. doi: 10.1016/j.soilbio.2008.07.006 CrossRefGoogle Scholar
  35. Rohlf FJ, Sokal RR (1981) Statistical tables, 2nd edn. W.H. Freeman and Company, San FransiscoGoogle Scholar
  36. Rooij-van D, der Goes PCEM (1995) The role of plant-parasitic nematodes and soil-borne fungi in the decline of Ammophila arenaria (L.) Link. New Phytol 129:661–669CrossRefGoogle Scholar
  37. Rooij-van D, der Goes PCEM, van der Putten WH, van Dijk C (1995) Analysis of nematodes and soil-borne fungi from Ammophila arenaria (Marram Grass) in Dutch coastal foredunes by multivariate techniques. Eur J Plant Pathol 101:149–162Google Scholar
  38. Seliskar DM, Huettel RN (1993) Nematode involvement in the dieout of Ammophila breviligulata (Poaceae) on the mid-Atlantic coastal dunes of the United States. J Coast Res 9:97–103Google Scholar
  39. Silva RA, Oliveira CMG, Inomoto MM (2008) Fauna of plant-parasitic nematodes in natural and cultivated areas of the Amazon forest, Mato Grosso State, Brazil. Trop Plant Pathol 33:204–211Google Scholar
  40. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New YorkGoogle Scholar
  41. Van der Laan D, van Tongeren OFR, van der Putten WH, Veenbaas G (1997) Vegetation development in coastal foredunes in relation to methods of establishing marram grass (Ammophila arenaria). J Coastal Conserv 3:179–190Google Scholar
  42. Van der Putten WH, van Dijk C, Troelstra SR (1988) Biotic soil factors affecting the growth and development of Ammophila arenaria. Oecologia 76:313–320Google Scholar
  43. Van der Putten WH, van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56CrossRefGoogle Scholar
  44. Van der Putten WH, Cook R, Costa S, Davies KG, Fargette M, Freitas H, Hol WHG, Kerry BR, Maher N, Mateille T, Moens M, de la Peña E, Piśkiewicz AM, Raeymaekers ADW, Rodríguez-Echeverría S, van der Wurff AWG (2006) Nematode interactions in nature: models for sustainable control of nematode pests of crop plants? Adv Agron 89:227–260CrossRefGoogle Scholar
  45. Van der Stoel CD, van der Putten WH (2006) Pathogenicity and host range of Heterodera arenaria in coastal foredunes. Nematology 8:255–263CrossRefGoogle Scholar
  46. Van der Stoel CD, van der Putten WH, Duyts H (2002) Development of a negative plant-soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. J Ecol 90:978–988CrossRefGoogle Scholar
  47. Van der Stoel CD, Duyts H, van der Putten WH (2006) Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass. Oikos 112:651–659CrossRefGoogle Scholar
  48. Verschoor BC, de Goede RGM, de Hoop JW, de Vries FW (2001a) Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands. Pedobiologia 45:213–233. doi: 10.1078/0031-4056-00081 CrossRefGoogle Scholar
  49. Verschoor BC, de Goede RGM, de Vries FW, Brussaard L (2001b) Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application. Appl Soil Ecol 17:1–17. doi: 10.1016/s0929-1393(00)00135-9 CrossRefGoogle Scholar
  50. Wall JW, Skene KR, Neilson R (2002) Nematode community and trophic structure along a sand dune succession. Biol Fertil Soils 35:293–301CrossRefGoogle Scholar
  51. Wilson JB, Sykes MT (1999) Is zonation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecol Lett 2:233–236CrossRefGoogle Scholar
  52. Zoon FC, Troelstra SR, Maas PWT (1993) Ecology of the plant-feeding nematode fauna associated with sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides) in different stages of dune succession. Fundam Appl Nematol 16:247–258Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • E. P. Brinkman
    • 1
  • H. Duyts
    • 1
  • G. Karssen
    • 2
  • C. D. van der Stoel
    • 1
    • 3
  • W. H. van der Putten
    • 1
    • 4
  1. 1.Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  2. 2.Plant Protection Service, Nematology SectionWageningenThe Netherlands
  3. 3.CBS Statistics NetherlandsHeerlenThe Netherlands
  4. 4.Laboratory of NematologyWageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations