Advertisement

Plant and Soil

, Volume 389, Issue 1–2, pp 419–423 | Cite as

Diazotrophic methanotrophs in peatlands: the missing link?

  • Adrian Ho
  • Paul LE Bodelier
Commentary

Commentary

A recent publication in Plant and Soil (Leppänen et al. 2015) reports on the effect of peat moss species and water table on the N2 fixation rate in boreal peatlands and forests. The lack of CH4-stimulated N2 fixation led the authors to conclude that methanotrophs do not contribute significantly to the N-supply of the mosses. This is in contrast to other studies in peatlands which suggest that methanotrophs may be responsible for the “unaccounted” N-input. The importance of peatlands in the global carbon cycle, combined with the crucial role of N not only in ombotrophic peatlands but also in thawing permafrost warrants a synthesis of these controversies.

Evidence for and against diazotrophic N-provision by aerobic methanotrophs in peatlands

Ombrotrophic peatlands are nitrogen poor environments, relying solely on atmospheric N deposition. Yet, there is an imbalance in atmospheric N deposition and N accumulation in Sphagnummosses, with N accumulation by far exceeding...

Keywords

Methane oxidation Sphagnum NifH Symbiosis Stable isotope labeling Nitrogenase Nitrogen fixation 

Notes

Acknowledgments

AH is financially supported by the BE-Basic grant F03.001 (SURE/SUPPORT). This publication is publication no. 5792 of the Netherlands Institute of Ecology.

References

  1. Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 80:5043–5052CrossRefPubMedCentralPubMedGoogle Scholar
  2. Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and amended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 63:1096–1104CrossRefPubMedGoogle Scholar
  3. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Chang Biol 7: 591–598Google Scholar
  4. Berg A, Danielsson Å, Svensson BH (2013) Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil 362:271–278CrossRefGoogle Scholar
  5. Blazewicz SJ, Petersen DG, Waldrop MP, Firestone MK (2012) Anaerobic oxidation of methane in tropical and boreal soils: ecological significance in terrestrial methane cycling. J Geophys Res 117:G02033. doi: 10.1029/2011JG001864 Google Scholar
  6. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277CrossRefPubMedGoogle Scholar
  7. Bragina A, Berg C, Muller H, Moser D, Berg G (2013) Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep 3:1955. doi: 10.1038/srep01955 CrossRefPubMedGoogle Scholar
  8. Buckley DH, Huangyutitham V, Hsu SF, Nelson TA (2008) 15 N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40:1272–1283CrossRefGoogle Scholar
  9. Dedysh SN (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiol 78:655–669CrossRefGoogle Scholar
  10. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp.nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969Google Scholar
  11. Dedysh SN, Derakshani M, Liesack W (2001) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67:4850–4857CrossRefPubMedCentralPubMedGoogle Scholar
  12. Duc L, Noll M, Meier BE, Burgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding Alpine Glacier. Microbiol Ecol 57:179–190CrossRefGoogle Scholar
  13. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–550CrossRefPubMedGoogle Scholar
  14. Ho A, Kerckhof F-M, Lüke C, Reim A, Krause S, Boon N, Bodelier PLE (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep 5:335–345CrossRefPubMedGoogle Scholar
  15. Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotrophy richness stimulates methanotrophic activity. ISME J 8:1945–1948CrossRefPubMedGoogle Scholar
  16. Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microbiol 77:8509–8515CrossRefPubMedCentralPubMedGoogle Scholar
  17. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Nagana Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785–2790CrossRefPubMedGoogle Scholar
  18. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Damsté JSS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621CrossRefGoogle Scholar
  19. Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart G-J, Jetten MSM, Damste JSS, Op den Camp HJM (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77:5643–5654CrossRefPubMedCentralPubMedGoogle Scholar
  20. Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci U S A 111:734–739CrossRefPubMedCentralPubMedGoogle Scholar
  21. Leppänen SM, Rissanen AJ, Tiirola M (2015) Nitrogen fixation in Sphagnum mosses is affected by moss species and water table level. Plant Soil: doi  10.1007/s11104-014-2356-6
  22. Liebner S, Svenning MM (2013) Environmental transcription of mmoX by methane-oxidizing Proteobacteria in a subartic palsa peatland. Appl Environ Microbiol 79:701–706CrossRefPubMedCentralPubMedGoogle Scholar
  23. Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer E-M, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99:914–922CrossRefGoogle Scholar
  24. Murase J, Frenzel P (2007) A methane-driven microbial food web in a wetland rice soil. Environ Microbiol 9:3025–3034CrossRefPubMedGoogle Scholar
  25. Murrell C, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486Google Scholar
  26. Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila E-S, Fritze H (2014) Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 88:596–611CrossRefPubMedGoogle Scholar
  27. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156CrossRefPubMedGoogle Scholar
  28. Schmidt H, Eickhorst T, Muβmann M (2012) Gold-FISH: a new approach for the in situ detection of single microbial cells combining fluorescence and scanning electron microscopy. Syst Appl Microbiol 35:518–525CrossRefPubMedGoogle Scholar
  29. Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878CrossRefPubMedGoogle Scholar
  30. Smemo KA, Yavitt JB (2007) Evidence for anaerobic CH4oxidation in freshwater peatlands. Geomicrobiol 24:583–597Google Scholar
  31. Van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791Google Scholar
  32. Vile MA, Wieder RK, Zivkovic T, Scott KD, Vitt DH, Hartsock JA, Iosue CL, Quinn JC, Petix M, Fillingim HM, Popma JMA, Dynarski KA, Jackman TR, Albright CM, Wykoff DD (2014) N2-fixation by methanotrophs sustain carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry 121:317–328Google Scholar
  33. Weekers PHH, Bodelier PLE, Wijen JPH, Vogels GD (1993) Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphage, and Hartmannella vermiformis on various bacteria. Appl Environ Microbiol 59:2317–2319PubMedCentralPubMedGoogle Scholar
  34. Woebken D, Burow LC, Prufert-Bebout L, Bebout BM, Hoehler TM, Pett-Ridge J, Spormann AM, Weber PK, Singer SW (2012) Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. ISME J 6:1427–1439CrossRefPubMedCentralPubMedGoogle Scholar
  35. Zheng Y, Huang R, Wang BZ, Bodelier PLE, Jia ZJ (2014) Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11:3353–3368CrossRefGoogle Scholar
  36. Zhu B, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidation of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbial EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations