Plant and Soil

, Volume 385, Issue 1–2, pp 49–62 | Cite as

Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model

  • Michael Henke
  • Vaia Sarlikioti
  • Winfried Kurth
  • Gerhard H. Buck-Sorlin
  • Loïc Pagès
Regular Article


Background and aims

Root plasticity is a key process affecting the root system foraging capacity while itself being affected by the nutrient availability around the root environment. Root system architecture is determined by three types of plastic responses: chemotropism, spacing of lateral roots, hierarchy between laterals and their mother root.


We attempt a systematic comparison of the effect of each mechanism on the whole root plasticity when the root is grown under four distinct nutrient distribution scenarios using a functional-structural root model. Nutrient distributions included i) a completely random distribution, ii) a layered distribution, iii) a patch distribution, and iv) a gradient distribution. Root length, volume, total uptake, uptake efficiency as well as the soil profiles are given as model outputs.


Root uptake was more efficient in a soil with a gradient nutrient distribution and less so in a patch distribution for all mechanisms. In terms of mechanisms uptake was more efficient for the spacing (elongation) mechanism than the hierarchy (branching) mechanism.


Root mechanisms play a different role in the foraging of the root with chemotropism being a global tracking mechanism, whereas spacing and hierarchy are ways to proliferate in a zone with locally available nutrients.


Root plasticity 3D architecture Nutrient uptake Chemotropism Root growth strategies Functional-structural plant modelling (FSPM) 



Functional-structural plant modelling



V. Sarlikioti was funded by a grant of French National Institute of Agronomic Research (INRA, EA department).


  1. Barlow P (2002) The root cap: cell dynamics, cell differentiation and cap function. J Plant Growth Regul 21:261–286. doi: 10.1007/s00344-002-0034-z CrossRefGoogle Scholar
  2. Berntson GM (1994) Modeling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493. doi: 10.1111/j.1469-8137.1994.tb03966.x CrossRefGoogle Scholar
  3. Bilbrough CJ, Caldwell MM (1995) The effects of shading and N status on root proliferation in nutrient patches by the perennial grass Agropyron desertorum in the field. Oecologia 103:10–16. doi: 10.1007/BF00328419 CrossRefGoogle Scholar
  4. Bingham IJ, Blackwood JM, Stevenson EA (1997) Site, scale and time-course for adjustments in lateral root initiation in wheat following changes in C and N supply. Ann Bot 80:97–106. doi: 10.1006/anbo.1997.0412 CrossRefGoogle Scholar
  5. Buck-Sorlin GH (2013) Functional-structural plant modeling. In: Dubitzky W, Wolkenhauer O, Cho K, Yokota H (eds) Encyclopedia of systems biology, doi: 10.1007/978-1-4419-9863-7
  6. Campbell BD, Grime JP (1989) A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment. New Phytol 112:261–267. doi: 10.1111/j.1469-8137.1989.tb02382.x CrossRefGoogle Scholar
  7. Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538. doi: 10.1007/BF00320417 CrossRefGoogle Scholar
  8. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570. doi: 10.1146/annurev.ecolsys.28.1.545 CrossRefGoogle Scholar
  9. Chen YL, Dunbabin VM, Postma JA, Diggle AJ, Siddique KHM, Rengel Z (2013) Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant Soil 372(1–2):319–337. doi: 10.1007/s11104-013-1741-x CrossRefGoogle Scholar
  10. Dunbabin V, Rengel Z, Diggle A (2004) Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Funct Ecol 18:204–211. doi: 10.1111/j.0269-8463.2004.00827.x CrossRefGoogle Scholar
  11. Einsmann JC, Jones RH, Pu M, Mitchell RJ (1999) Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J Ecol 87:609–619. doi: 10.1046/j.1365-2745.1999.00376.x CrossRefGoogle Scholar
  12. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  13. Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214. doi: 10.1007/978-94-011-0455-5_23 CrossRefGoogle Scholar
  14. Fang S, Yan XL, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to research on rice phosphorus acquisition. Plant J 60:1096–1108. doi: 10.1111/j.1365-313X.2009.04009.x PubMedCrossRefGoogle Scholar
  15. Fang S, Clark R, Liao H (2012) 3D quantification of plant root architecture in situ. Measuring roots. Springer Berlin 135–148. doi: 10.1007/978-3-642-22067-8_9
  16. Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77. doi: 10.1111/j.1469-8137.1987.tb04683.x CrossRefGoogle Scholar
  17. Fitter AH, Nichols R, Harvey ML (1988) Root system architecture in relation to life history and nutrient supply. Funct Ecol 2:345–351. doi: 10.2307/2389407 CrossRefGoogle Scholar
  18. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382. doi: 10.1111/j.1469-8137.1991.tb00018.x CrossRefGoogle Scholar
  19. Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity of plants. Academic, New York, pp 305–323CrossRefGoogle Scholar
  20. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68. doi: 10.1023/A:1010329902165 CrossRefGoogle Scholar
  21. Granato TC, Raper CDJ (1989) Proliferation of maize (Zea mays L.) roots in response to localised supply of nitrate. J Exp Bot 40:263–275. doi: 10.1093/jxb/40.2.263 PubMedCrossRefGoogle Scholar
  22. Henke M, Kurth W, Buck-Sorlin GH (2010) A general FSPM for prototyping, intercropping and education. In: DeJong T and Da Silva D (eds) Proceedings of the 6th International Workshop on Functional-Structural Plant Modeling, University of California, Davis, U.S.A., 12–17 September 2010, p 264Google Scholar
  23. Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820. doi: 10.1046/j.1365-3040.1999.00454.x CrossRefGoogle Scholar
  24. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  25. Hutchings MJ, de Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238. doi: 10.1016/S0065-2504(08)60215-9 CrossRefGoogle Scholar
  26. Kniemeyer O (2008) Design and implementation of a graph grammar based language for functional-structural plant modelling. Dissertation, BTU CottbusGoogle Scholar
  27. de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant Cell Environ 32:704–712. doi: 10.1111/j.1365-3040.2009.01936.x PubMedCrossRefGoogle Scholar
  28. Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332:177–192. doi: 10.1007/s11104-010-0284-7 CrossRefGoogle Scholar
  29. Levang-Brilz N, Biondini ME (2002) Growth rate, root development and nutrient uptake of 55 plant species from the Great Plains Grasslands, USA. Plant Ecol 165:117–144. doi: 10.1023/A:1021469210691 CrossRefGoogle Scholar
  30. Lynch J, Nielsen K, Davis R, Jablokow A (1997) Simroot: modeling and visualization of botanical root systems. Plant Soil 188:139–151. doi: 10.1023/A:1004276724310 CrossRefGoogle Scholar
  31. Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. doi: 10.1023/A:1013324727040 CrossRefGoogle Scholar
  32. Marina GG, Brown JS, Gersani M (2002) Intra-plant versus inter-plant root competition in beans: avoidance, resource matching or tragedy of the commons. Plant Ecol 160:235–247. doi: 10.1023/A:1015822003011 CrossRefGoogle Scholar
  33. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77. doi: 10.1111/j.1365-3040.2005.01306.x PubMedCrossRefGoogle Scholar
  34. Monshausen GB, Gilroy S (2009) The exploring root—root growth responses to local environmental conditions. Curr Opin Plant Biol 12:766–772. doi: 10.1016/j.pbi.2009.08.002 PubMedCrossRefGoogle Scholar
  35. Nielsen KL, Lynch J, Jablokow AG, Curtis PS (1994) Carbon cost of root systems: an architectural approach. Plant Soil 165:161–169. doi: 10.1007/978-94-017-0851-7_16 CrossRefGoogle Scholar
  36. Pagès L (1995) Growth patterns of the lateral roots of young oak (Quercus robur) tree seedlings. Relationship with apical diameter. New Phytol 130:503–509. doi: 10.1111/j.1469-8137.1995.tb04327.x CrossRefGoogle Scholar
  37. Pagès L (2011) Links between root developmental traits and foraging performance. Plant Cell Environ 10:1749–1760. doi: 10.1111/j.1365-3040.2011.02371.x CrossRefGoogle Scholar
  38. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New York, ISBN: 0-387-97297-8CrossRefGoogle Scholar
  39. Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674. doi: 10.1111/j.1469-8137.1994.tb02969.x CrossRefGoogle Scholar
  40. Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50. doi: 10.1023/A:1010377818094 CrossRefGoogle Scholar
  41. Rose DA (1983) The description of the growth of root systems. Plant Soil 75:405–415. doi: 10.1007/BF02369974 CrossRefGoogle Scholar
  42. Ryser P, Verduyn B, Lambers H (1997) Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. New Phytol 137:293–302. doi: 10.1046/j.1469-8137.1997.00807.x CrossRefGoogle Scholar
  43. Sarlikioti V, de Visser PHB, Buck-Sorlin GH, Marcelis LFM (2011) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot 108(6):1065–1073. doi: 10.1093/aob/mcr006 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Scott BJ, Robson AD (1991) The distribution of Mg, P and K in the split roots of subterranean clover. Ann Bot 67:251–256Google Scholar
  45. Toky OP, Bisht RP (1992) Observations on the rooting patterns of some agroforestry trees in an arid region of north-western India. Agrofor Syst 17:245–263. doi: 10.1007/BF00123320 CrossRefGoogle Scholar
  46. Tsutsumi D, Kosugi K, Mizuyama T (2003) Root-system development and water-extraction model considering hydrotropism. Soil Sci Soc Am J 67:387–401. doi: 10.2136/sssaj2003.3870 CrossRefGoogle Scholar
  47. Vos J, Marcelis L, de Visser P, Struik P, Evers J (2007) Functional–structural plant modelling in crop production – Adding a dimension. In: Vos J, Marcelis L, de Visser P, Struik P, Evers J (eds) Functional–structural plant modelling in crop production. Springer, Berlin, pp 1–10CrossRefGoogle Scholar
  48. Wijesinghe DK, Hutchings MJ (1997) The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. J Ecol 85:17–28CrossRefGoogle Scholar
  49. Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol 89:972–983. doi: 10.1111/j.1365-2745.2001.00618.x CrossRefGoogle Scholar
  50. Wu QL (2012) Sensitivity analysis for functional-structural plant modeling. Dissertation, École Centrale ParisGoogle Scholar
  51. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 342:51–59. doi: 10.1093/jexbot/51.342.51 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Henke
    • 1
    • 3
  • Vaia Sarlikioti
    • 2
  • Winfried Kurth
    • 3
  • Gerhard H. Buck-Sorlin
    • 1
  • Loïc Pagès
    • 2
  1. 1.UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), Agrocampus Ouest, Centre d’AngersAngers cedex 01France
  2. 2.INRA Centre d’Avignon, UR 1115, PSH, Site AgroparcAvignon cedex 9France
  3. 3.Department of Ecoinformatics, Biometrics and Forest GrowthUniversity of GöttingenGöttingenGermany

Personalised recommendations