Plant and Soil

, Volume 383, Issue 1–2, pp 73–86 | Cite as

Overexpression of citrate operon in Herbaspirillum seropedicae Z67 enhances organic acid secretion, mineral phosphate solubilization and growth promotion of Oryza sativa

  • Jitendra Wagh
  • Praveena Bhandari
  • Sonal Shah
  • G. Archana
  • G. Naresh Kumar
Regular Article


Background and aims

Herbaspirillum seropedicae Z67, nitrogen fixing endophyte, significantly promotes the growth of cereals. Organic acid secreting nitrogen fixing rhizobacteria have better plant growth promotion abilities due to mineral phosphate solubilization.


Plasmids pAB7, pJNK3 and pJNK4 containing Escherichia coli cs (gltA), NADH insensitive cs (gltA1), and citrate operon consisting of gltA1 gene along with Salmonella typhimurium Na+ dependent citrate transporter (citC) gene under constitutive lac promoter were constructed in broad host range plasmid pUCPM18-Kmr. The plasmid transformants of H. seropedicae Z67 were obtained by electroporation.


Hs (pAB7) and Hs (pJNK3) had increased CS activity but citric acid secretion was not significant. Hs (pJNK3) secreted 45 mM acetic acid while Hs (pJNK4) secreted 2.7 mM citric and 51 mM acetic acids. Hs (pJNK3) and Hs (pJNK4) released 80 μM and 110 μM amount of P from rock phosphate, respectively, in buffered medium under both aerobic and micro aerobic conditions. These transformants showed better plant growth promoting factors. Upon inoculation to rice plants (Gujarat – 17), increase of Fresh weight, Dry weight N, P and K content was observed.


Thus the study demonstrates that artificial citrate operon in H. seropedicae Z67 enhances phosphate solubilization and plant growth promotion abilities.


Citrate synthase Citrate secretion Citrate transporter Mineral phosphate solubilization Rice 


  1. Ames BN (1966) Assay of inorganic phosphate, total phosphate, and phosphatases. Methods Enzymol 8:115–118CrossRefGoogle Scholar
  2. Anastassiadis S, Rehm HJ (2005) Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177. Electron J Biotechnol 8:146–161CrossRefGoogle Scholar
  3. Aoshima M, Ishii M, Yamagishi A, Oshima T, Igarashi Y (2003) Metabolic characteristics of an isocitrate dehydrogenase defective derivative of Escherichia coli BL21 (DE3). Biotechnol Bioeng 84:732–737PubMedCrossRefGoogle Scholar
  4. Archana G, Buch A, Naresh Kumar G (2012) Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. In: Satayanarayan T, Johri BN, Prakash AA (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Heidelberg, pp 35–53CrossRefGoogle Scholar
  5. Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 30:86–93CrossRefGoogle Scholar
  6. Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soil 30:485–489CrossRefGoogle Scholar
  7. Belimov AA, Kojemiakov PA, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 17:29–37CrossRefGoogle Scholar
  8. Boesten B, Priefer UB (2004) The C-terminal receiver domain of the Rhizobium leguminosarum bv. viciae FixL protein is required for free-living microaerobic induction of the fnrN promoter. Microbiol 150:3703–3713CrossRefGoogle Scholar
  9. Buch AB, Archana G, Naresh Kumar G (2008) Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159:635–642PubMedCrossRefGoogle Scholar
  10. Buch AD, Archana G, Naresh Kumar G (2009) Enhance citric acid biosynthesis in Pseudomonas fluorescence ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiol 155:2620–2629CrossRefGoogle Scholar
  11. Buch AD, Archana G, Naresh Kumar G (2010) Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresour Technol 101:679–687PubMedCrossRefGoogle Scholar
  12. Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar. phaseoli. Appl Environ Microbiol 62:2767–2772PubMedPubMedCentralGoogle Scholar
  13. Dijkstra M, Frank J, Duine JA (1989) Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X. Biochem J 257:87–94PubMedPubMedCentralGoogle Scholar
  14. Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171CrossRefGoogle Scholar
  15. Fang W, Hu JY, Ong SL (2009) Influence of phosphorus on biofilm formation in model drinking water distribution systems. J Appl Microbiol 106:1328–1335PubMedCrossRefGoogle Scholar
  16. Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869PubMedCrossRefGoogle Scholar
  17. Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673CrossRefGoogle Scholar
  18. Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002a) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145CrossRefGoogle Scholar
  19. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002b) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93CrossRefGoogle Scholar
  20. Hall BG (1982) Chromosomal mutation for citrate utilization by Escherichia coli K-12. J Bacteriol 151:269–273PubMedPubMedCentralGoogle Scholar
  21. Hester KL, Lehman J, Najar F, Song L, Roe BA, MacGregor CH, Hager PW, Phibbs PV Jr, Sokatch JR (2000) Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa. J Bacteriol 182:1144–1149Google Scholar
  22. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119CrossRefGoogle Scholar
  23. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906PubMedCrossRefGoogle Scholar
  24. Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture-A review. Agron Sustain Dev 26:1–15CrossRefGoogle Scholar
  25. Kumar C, Yadav K, Archana G, Naresh Kumar G (2013) 2-Ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization. Curr Microbiol 67:388–394PubMedCrossRefGoogle Scholar
  26. Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: State of knowledge and future prospects. Plant Soil 252:151–167CrossRefGoogle Scholar
  27. Lolkema JS (2006) Domain structure and pore loops in the 2-hydroxycarboxylate transporter family. J Mol Microbiol Biotechnol 11:318–325PubMedCrossRefGoogle Scholar
  28. Matsuno K, Blais T, Serio AW, Conway T, Henkin TM, Sonenshein AL (1999) Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J Bacteriol 181:3382–3391PubMedPubMedCentralGoogle Scholar
  29. Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458PubMedCrossRefGoogle Scholar
  30. Olivares FL, Baldani VLD, Reis M, Baldani JI, Dobereiner (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Graminede. Biol Fertil Soils 21:197–200CrossRefGoogle Scholar
  31. Pal SS (1999) Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 213:221–230CrossRefGoogle Scholar
  32. Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263PubMedCrossRefGoogle Scholar
  33. Park SJ, Mccabe J, Turana J, Gunsalus RP (1994) Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and C supply: role of the arcA gene product. J Bacteriol 176:5086–5092PubMedPubMedCentralGoogle Scholar
  34. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Almeida MIM, Alves LR, Arantes OMN, Balsanelli E, Barcellos FG, Baura VA, Binde DR, Campo RJ, Chubatsu LS, Chueire LMO, Ciferri RR, Correa LC, da Conceicao Silva JL, Dabul ANG, Dambros BP, Faoro H, Favetti A, Friedermann G, Furlaneto MC, Gasques LS, Gimenes CCT, Gioppo NMR, Glienke-Blanco C, Godoy LP, Guerra MP, Karp S, Kava-Cordeiro V, Margarido VP, Mathioni SM, Menck-Soares MA, Murace NK, Nicolas MF, Oliveira CEC, Pagnan NAB, Pamphile JA, Patussi EV, Pereira LFP, Pereira-Ferrari L, Pinto FGS, Precoma C, Prioli AJ, Prioli SMAP, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha CLMSC, Rocha SN, Santos K, Satori D, Silva AG, Simao RCG, Soares MAM, Souza EM, Steffens MBR, Steindel M, Tadra-Sfeir MZ, Takahashi EK, Torres RA, Valle JS, Vernal JI, Vilas-Boas LA, Watanabe MAE, Weiss VA, Yates MA, Souza EM (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:5CrossRefGoogle Scholar
  35. Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110CrossRefGoogle Scholar
  36. Peterson GL (1979) Review of the Folin phenol quantitation method of Lowry, Rosenberg, Farr and Randall. Anal Biochem 100:201–220PubMedCrossRefGoogle Scholar
  37. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiol 17:362–370Google Scholar
  38. Radwan TSD, Massena MKZ, Reis V (2004) Effect of inoculation of Azospirillum and Herbaspirillum in production of indole compounds in seedlings of maize and rice. Pesquia Agrop Bras Brasilia Braz 39:987–994Google Scholar
  39. Rojo F (2010) C catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684PubMedGoogle Scholar
  40. Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47PubMedCrossRefGoogle Scholar
  41. Sambrook J, Fritch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  42. Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for C flux distribution in bacteria. FEMS Microbiol Rev 29:765–794PubMedCrossRefGoogle Scholar
  43. Serre PA (1969) Citrate synthase. Methods Enzymol 13:3–11CrossRefGoogle Scholar
  44. Srivastava S, Kausalya MT, Archana G, Rupela OP, Naresh Kumar G (2006) Efficacy of organic acid secreting bacteria in solubilization of rock phosphate in acidic alfisols. Dev Plant Soil Sci 102:117–124Google Scholar
  45. Stokell DJ, Lynda JD, Maurus R, Nguyen NT, Sadler G, Choudhary K, Hultin PG, Brayer GD, Duckworth HW (2003) Probing the roles of key residues in the unique regulatory NADH binding site of type II citrate synthase of Escherichia coli. J Biol Chem 278:35435–35443PubMedCrossRefGoogle Scholar
  46. Tiwari VN, Lehri LK, Pathak AN (1989) Effect of inoculating crops with phospho-microbes. Exp Agric 25:47–50CrossRefGoogle Scholar
  47. Unge A, Tombolini R, Davey ME, de Bruijn FJ, Jansson JK (1996) GFP as a marker gene. In: Akkermans ADL, Van Elsas JD, de Bruijn FJ (eds) Molecular Microbial Ecology Manual Section 6.1.13. Academic Publishers, Dordrecht, pp 1–16Google Scholar
  48. Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodriguez-Barrueco C, Cervantes E, Manuel C, Jose-Mariano I (2007) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Dev Plant Soil Sci 102:43–50Google Scholar
  49. Vicente CSL, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S (2012) Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PLoS ONE 7:e46661PubMedCrossRefPubMedCentralGoogle Scholar
  50. Vikram A, Algawadi AR, Krishnaraj PU, Mahesh KKS (2007) Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World J Microbiol Biotechnol 23:1333–1337CrossRefGoogle Scholar
  51. Viollier PH, Nguyen KT, Minas W, Folcher M, Dale GE, Thompson CJ (2001) Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor. J Bacteriol 183:3193–3203PubMedCrossRefPubMedCentralGoogle Scholar
  52. Wagh J, Shah S, Bhandari P, Archana KNG (2014) Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol Online. doi: 10.1007/s00253-014-5610-1 Google Scholar
  53. Walsh K, Koshland DE (1985) Characterization of rate controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A 82:3577–3581PubMedCrossRefPubMedCentralGoogle Scholar
  54. Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophs from banana and pineapple plants. Plant Soil 21:103–113CrossRefGoogle Scholar
  55. Wolfe AJ (2005) The Acetate Switch. Microbiol Mol Biol Rev 69:12–50PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jitendra Wagh
    • 1
  • Praveena Bhandari
    • 1
  • Sonal Shah
    • 1
  • G. Archana
    • 2
  • G. Naresh Kumar
    • 1
    • 3
  1. 1.Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of ScienceM. S. University of BarodaVadodaraIndia
  2. 2.Department of Microbiology and Biotechnology Center, Faculty of ScienceM. S. University of BarodaVadodaraIndia
  3. 3.Department of Biochemistry, Faculty of ScienceM. S. University of BarodaVadodaraIndia

Personalised recommendations