Plant and Soil

, Volume 382, Issue 1–2, pp 133–150 | Cite as

Physiological and biochemical impacts of magnesium-deficiency in two cultivars of coffee

  • Dayane Meireles da Silva
  • Isabel Rodrigues Brandão
  • Jose Donizeti Alves
  • Meline Oliveira de Santos
  • Kamila Rezende Dázio de Souza
  • Helbert Rezende Oliveira de Silveira
Regular Article



To evaluate biochemical and physiological impacts of magnesium-deficiency on seedlings of two cultivars (Catuaí and Acaiá) of Coffea arabica L..


Six month old seedlings from both cultivars were transferred to plastic receptacles containing solutions with different concentrations of magnesium (Mg). Fully expanded leaves and roots were evaluated at the beginning of treatment and after 10, 20 and 30 days for chlorophyll and carotenoid content, biomass allocation, partitioning of carbohydrates and antioxidant metabolism.


Mg-deficiency was characterized by an increase in the shoot/root dry weight ratio, which may be related to accumulation of carbohydrates in leaves. This accumulation is probably responsible for triggering a reduction in the consumption of reducing equivalents, providing favorable conditions for the formation of reactive oxygen species (ROS). The increase in ROS production was accompanied by increases in ascorbate concentration and enzyme activity of the antioxidant metabolism.


The Catuaí cultivar is more sensitive to Mg-deficiency than the Acaiá cultivar. When exposed to magnesium deficiency the Catuaí cultivar had reduced growth and its antioxidant metabolism was less efficient at removing ROS.


Carbohydrate partitioning Biomass allocation Chlorophyll Oxidative stress 



The authors would like to thank Dr. Antônio Eduardo Furtini Neto. The reserach was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)


  1. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi: 10.1146/annurev.arplant.50.1.601 PubMedCrossRefGoogle Scholar
  2. Arakawa N, Tsutsumi K, Sanceda NG, Kurata Y, Inagaki T (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Biol Chem 45:1289–1290CrossRefGoogle Scholar
  3. Ayala-Silva T, Beyl CA (2005) Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv Space Res 35:305–317. doi: 10.1016/j.asr.2004.09.008 PubMedCrossRefGoogle Scholar
  4. Balakrishnan K, Rajendran C, Kulandaivelu G (2001) Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 38:477–479. doi:  10.1023/A:1010958512210
  5. Biemelt S, Keetman U, Albrecht G (1998) Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol 116:651–658. doi: 10.1104/pp. 116.2.651 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bouché-Pillon S, Fleurat-Lessard P, Fromont JC, Serrano R, Bonnemain JL (1994) Immunolocalization of the plasma membrane H+-ATPase in minor veins of Vicia faba in relation to phloem loading. Plant Physiol 105:691–697. doi:  10.1104/pp.105.2.691
  7. Blair JM (1970) Magnesium, potassium and the adenylate kinase equilibrium. Magnesium as feedback signal from the adenine nucleotide pool. Eur J Biochem 13:384–390. doi:  10.1111/j.1432-1033.1970.tb00940.x
  8. Breuseguem FV, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414. doi: 10.1016/S0168-9452(01)00452-6 CrossRefGoogle Scholar
  9. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310PubMedCrossRefGoogle Scholar
  10. Bush DR (1989) Proton-couple sucrose transport in plasmalemma vesicles isolated from sugar beet leaves. Plant Physiol 89:1318–1323. doi: 10.1146/annurev.pp. 44.060193.002501 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cakmak I (2013) Magnesium in crop production, food quality and human Health. Plant Soil 368:1–4. doi: 10.1007/s11104-013-1781-2 CrossRefGoogle Scholar
  12. Cakmak I, Hengeler C, Marschener H (1994a) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257. doi: 10.1093/jxb/45.9.1251 CrossRefGoogle Scholar
  13. Cakmak I, Hengeler C, Marschner H (1994b) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250. doi: 10.1093/jxb/45.9.1245 CrossRefGoogle Scholar
  14. Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704. doi: 10.1111/j.1399-3054.2007.01042.× PubMedCrossRefGoogle Scholar
  15. Cakmak I, Marschener H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in croop production. Better Crops 94:23–25Google Scholar
  17. Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Bioch 41:35–40. doi: 10.1016/S0981-9428(02)00006-2 CrossRefGoogle Scholar
  18. Carvalho CHS (2008) Cultivares de café: origem, características e recomendações. Embrapa Café, BrasíliaGoogle Scholar
  19. Ceppi G (2010) Parametres photosynthetiques affectant le transport d’electrons a travers le pool de plastoquinone: la densite des photosystemes I, le contenu de chlorophylle et l’activite d’une plastoquinol-oxydase PhD-thesis. University of Geneva, GenevaGoogle Scholar
  20. Ceppi MG, Oukarroum A, Nuran C, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288. doi: 10.1111/j.1399-3054.2011.01549.x PubMedCrossRefGoogle Scholar
  21. Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect os magnesium deficiency on antioxidante status and cádmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030. doi: 10.1016/j.jplph.2010.12.004 PubMedCrossRefGoogle Scholar
  22. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795. doi: 10.1007/s000180050041 PubMedCrossRefGoogle Scholar
  23. Dische Z (1962) General color reactions. In: Whistler RL, Wolfram ML (eds) Carbohydrate chemistry. Academic, New York, pp 477–520Google Scholar
  24. Ding Y, Luo W, Xu G (2006) Characterization of magnesium nutrition and interaction of magnesium and potassium in rice. Ann Appl Biol 149:111–123. doi: 10.1111/j.1744-7348.2006.00080.x CrossRefGoogle Scholar
  25. Fernandes KD, Paiva PDO, Carvalho JG, Resende AC, Figueiredo MA (2012) Multiple nitrogen and phosphorus deficiency in Zantedeschia. Cienc Agrotec 36:631–638. doi: 0.1590/S1413-70542012000600005Google Scholar
  26. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. doi: 10.1590/S1413-70542011000600001 Google Scholar
  27. Fischer ES, Lohaus G, Heineke D, Heldt HW (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plant 102:16–20. doi: 10.1034/j.1399-3054.1998.1020103.x CrossRefGoogle Scholar
  28. Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388. doi: 10.1046/j.1469-8137.2000.00667.x CrossRefGoogle Scholar
  29. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101. doi:/ 10.1104/pp.106.078295
  30. Getz HP, Kleins M (1995) The vacuolar ATPase of red beet storage tissue: electron microscopic demonstration of the “head-andstalk” structure. J Plant Physiol 108:14–23Google Scholar
  31. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314. doi:  10.1104/pp.59.2.309
  32. Guimarães RJ, Mendes ANG, Souza CAS (2002) Cafeicultura. FAEPE/UFLA, LavrasGoogle Scholar
  33. Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5–21. doi: 10.1007/s11104-012-1567-y CrossRefGoogle Scholar
  34. Hanstein S, Wang X, Qian X, Friedhoff P, Fatima A, Shan Y, Feng K, Schubert S (2011) Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize. Biochem J 435:93–101. doi: 10.1042/BJ20101414 PubMedCrossRefGoogle Scholar
  35. Havir EA, Mchale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84 :450–455. doi:  10.1104/pp.84.2.450
  36. Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsagr Moller I, White P (2012) Functions of macronutrients. In: Marschner P (ed) Mineral nutrition of higher plants, 3rd edn. Elsevier Ltd, Philadelphia, pp 135–189CrossRefGoogle Scholar
  37. Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics 5:1170–1183. doi: 10.1039/c3mt20223b PubMedCrossRefGoogle Scholar
  38. Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beet alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549. doi: 10.1007/s00425-004-1376-5 PubMedCrossRefGoogle Scholar
  39. Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355. doi: 10.1007/s00425-004-1340-4 PubMedCrossRefGoogle Scholar
  40. Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161. doi: 10.1093/jxb/eri215 PubMedCrossRefGoogle Scholar
  41. Hoagland D, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agr Exp Stn 42:1–32Google Scholar
  42. Igamberdiev AU, Kleczkowski LA (2003) Membrane potential, adenylate levels and Mg+2 are interconnected via adenylate kinase equilibrium in plant cells. Biochim Biophys Acta 1607:111–119. doi: 10.1016/j.bbabio.2003.09.005 PubMedCrossRefGoogle Scholar
  43. Jimenez A, Hernández JA, Pastori G, del Río LA (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335. doi:  10.1104/pp.118.4.1327
  44. Kaiser MW (1976) The effect of hydrogen peroxide on CO2 fixation of isolated chloroplast. Biochom Biophys Acta 440:476–482. doi: 10.1016/0005-2728(76)90035-9 Google Scholar
  45. Karabal E, Yücel M, Öktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933. doi: 10.1016/S0168-9452(03)00067-0 CrossRefGoogle Scholar
  46. Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298. doi: 10.1016/j.pbi.2009.04.013 PubMedCrossRefGoogle Scholar
  47. Keunen E, Peshev D, Vangronsveld J, Van Den EW, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255. doi: 10.1111/pce.12061 CrossRefGoogle Scholar
  48. Kura-Hotta M, Satoh K, Katoh S (1987) Relationship between Photosynthesis and Chlorophyll Content during Leaf Senescence of Rice Seedlings. Plant Cell Physiol 28:1321–1329Google Scholar
  49. Lavon R, Salomon R, Goldschmidt EE (1999) Effect of potassium, magnesium, and calcium deficiencies on nitrogen constituents and chloroplast components in Citrus leaves. J Am Soc Hort Sci 124:158–162Google Scholar
  50. Lichtenthaler HK (2001) Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz ST, Shoemaker CF, Smith DS, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, Davis, pp F4.3.1–F4.3.8Google Scholar
  51. Lu YK, Chen YR, Yang CM (1995) Influence of Fe- and Mg- deficiency on the thylakoid membranes of a chlorophylldeficient ch5 mutant of Arabidopsis thaliana. Bot Bull Acad Sin 36:175–179Google Scholar
  52. Malavolta E (1993) Nutrição mineral e adubação do cafeeiro: colheitas econômicas máximas, 1st edn. Agronômica Ceres, São PauloGoogle Scholar
  53. Malavolta E, Vitti GC, Oliveira AS (1989) Avaliação do estado nutricional das plantas, 1st edn. FEALQ, PiracicabaGoogle Scholar
  54. Martinez HEP, Menezes JFS, de Souza RB, Venegas VHA, Guimarães PTG (2003) Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesq Agropec Bras 38:703–713CrossRefGoogle Scholar
  55. Martinez HEP, Menezes JFS, de Souza RB, Venegas VHA, Guimarães PTG (2004) Nutrição mineral, fertilidade do solo e produtividade do cafeeiro nas regiões de Patrocínio, Manhuaçu, Viçosa, São Sebastião do Paraíso e Guaxupé. EPAMIG, Belo HorizonteGoogle Scholar
  56. Mengutay M, Ceylan Y, Kutman UB, Cakmak I (2013) Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 368:57–72. doi: 10.1007/s11104-013-1761-6 CrossRefGoogle Scholar
  57. Miller GL (1959) Use dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–428. doi: 10.1021/ac60147a030 Google Scholar
  58. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi: 10.1016/S1360-1385(02)02312-9 PubMedCrossRefGoogle Scholar
  59. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbato-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  60. Pérez-Gálvez A, Mínguez-Mosquera MI (2002) Degradation of non-esterified and esterified xanthophylls by free radicals. Biochim Biophys Acta 1569:31–34. doi: 10.1016/S0304-4165(01)00229-X PubMedCrossRefGoogle Scholar
  61. Peuke AD, Jeschke WD, Hartung W (2002) Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J Exp Bot 53:241–250. doi: 10.1093/jexbot/53.367.241 PubMedCrossRefGoogle Scholar
  62. Quiles MJ, López NI (2004) Photoinhibition of photosystems I and II induced by exposure to high light intesity during oat plant grown effects on the chloroplastic NADH dehydrogenase complex. Plant Sci 166:815–823. doi: 10.1016/j.plantsci.2003.11.025 CrossRefGoogle Scholar
  63. Riga P, Anza M (2003) Effect of magnesium deficiency on pepper growth parameters: implications for the determination of Mg-critical value. J Plant Nutr 26:1581–1593. doi: 10.1081/PLN-120022367 CrossRefGoogle Scholar
  64. Scandalios JG (1993) Oxygem stress and superoxide dismutase. Plant Physiol 101:7–12PubMedCentralPubMedGoogle Scholar
  65. Scott AJ, Knott M (1974) Cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507–512CrossRefGoogle Scholar
  66. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323PubMedGoogle Scholar
  67. Sun OJ, Payn TW (1999) Magnesium nutrition and photoshyntesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540. doi: 10.1093/treephys/19.8.535 PubMedCrossRefGoogle Scholar
  68. Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidante responses in mulberry plants. Sci Hortic 108:7–14. doi: 10.1016/j.scienta.2005.12.006 CrossRefGoogle Scholar
  69. Tomaz MA, Silva SR, Sakiyama NS, Martinez HEP (2003) Eficiência de absorção, translocação e uso de cálcio, magnésio e enxofre por mudas enxertadas de Coffea arabica. R Bras Ci Solo 27:885–892. doi: 10.1590/S0100-06832003000500013 CrossRefGoogle Scholar
  70. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66. doi: 10.1016/S0168-9452(99)00197-1 CrossRefGoogle Scholar
  71. Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368:87–99. doi: 10.1007/s11104-013-1589-0 CrossRefGoogle Scholar
  72. Ward JM, Kuhn C, Tegeder M, Frommer WB (1998) Sucrose transport in higher plants. Int Rev Cytol 178:41–71. doi: 10.1016/S0074-7696(08)62135-X PubMedCrossRefGoogle Scholar
  73. Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244. doi: 10.4067/S0718-95162012000200003 CrossRefGoogle Scholar
  74. White PJ (2012) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 7–47CrossRefGoogle Scholar
  75. Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in citrus seedlings: photoshynthesis, antioxidante system and carbohydrates. Trees 26:1237–1250. doi: 10.1007/s00468-012-0699-2 CrossRefGoogle Scholar
  76. Zanandrea I, Alves JD, Deuner S, Goulart PFP, Henrique PC, Silveira NM (2010) Tolerance of Sesbania virgata plants to flooding. Aust J Bot 57:661–669. doi: 10.1071/BT09144 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dayane Meireles da Silva
    • 1
  • Isabel Rodrigues Brandão
    • 1
  • Jose Donizeti Alves
    • 1
  • Meline Oliveira de Santos
    • 1
  • Kamila Rezende Dázio de Souza
    • 1
  • Helbert Rezende Oliveira de Silveira
    • 1
  1. 1.Departamento de Biologia, Setor de Fisiologia Vegetal – Campus UniversitárioUniversidade Federal de LavrasLavrasBrasil

Personalised recommendations