Skip to main content
Log in

Isolated cell walls exhibit cation binding properties distinct from those of plant roots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The principal contributor to the cation binding properties of roots is currently considered to be the cell wall or, alternatively, the plasma membrane. The aim of this study was to highlight their respective contributions in the binding properties.

Methods

Cell walls of a dicotyledon (Solanum lycopersicum L.) and monocotyledon (Triticum aestivum L.) were isolated from roots and their binding properties were compared to those of their respective roots. Cell wall and root binding capacities were evaluated by potentiometric titrations and cation exchange capacity measurements, while their biochemical composition was analyzed by 13C-NMR spectroscopy.

Results

The lower binding capacity of isolated cell walls compared to roots revealed that cell plasma membranes had a higher binding site density than cell walls. The significant decrease in some NMR signals, i.e. carbonyl C, N alkyl/methoxyl C and alkyl C regions, suggested that carboxyl, amine and phosphate binding sites, borne by proteins and phospholipid plasma membranes, contribute to the binding capacity.

Conclusions

Cell walls and plasma membranes were found to be jointly involved in root binding properties and their respective contributions seemed vary between plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmady-Asbchin S, Andrès Y, Gérente C, Cloirec PL (2008) Biosorption of Cu (II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresource Technology 99(14):6150–6155. doi:10.1016/j.biortech.2007.12.040

    Article  CAS  PubMed  Google Scholar 

  • Allan DL, Jarrell WM (1989) Proton and Copper Adsorption to Maize and Soybean Root Cell Walls. Plant Physiol 89(3):823–832. doi:10.1104/pp. 89.3.823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bastías E, Alcaraz-López C, Bonilla I, Martínez-Ballesta MC, Bolaños L, Carvajal M (2010) Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. Journal of Plant Physiology 167(1):54–60. doi:10.1016/j.jplph.2009.07.014

    Article  PubMed  Google Scholar 

  • Bravin M, Merrer B, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant and Soil 331(1–2):91–104. doi:10.1007/s11104-009-0235-3

    Article  CAS  Google Scholar 

  • Cathala N, Ghorbal MH, Lamant A, Salsac L (1978) Obtention de parois cellulosiques à l’aide d’un détergent : étude préliminaire de leur composition minérale. C R Acad Sc Paris t 286:1025–1027

    CAS  Google Scholar 

  • Cohen JA, Cohen M (1981) Adsorption of monovalent and divalent cations by phospholipid membranes. The monomer-dimer problem Biophysical journal 36(3):623–651

    CAS  Google Scholar 

  • Dœlsch E, Deroche B, Van de Kerchove V (2006b) Impact of sewage sludge spreading on heavy metal speciation in tropical soils (Réunion, Indian Ocean). Chemosphere 65 (2):286–293. doi:10.1016/j.chemosphere.2006.02.046

  • Doelsch E, Van de Kerchove V, Saint Macary H (2006a) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134 (1–2):119–134. doi:10.1016/j.geoderma.2005.09.003

  • Dufey JE, Braun R (1986) Cation Exchange Capacity of Roots : Tirtation Sum of Exchangeable Cations, Copper Adsorption. Journal of Plant Nutrition 9(8):1147–1155

    Article  CAS  Google Scholar 

  • Garnier C, Mounier S, Benaïm JY (2004a) Influence of dissolved organic carbon content on modelling natural organic matter acid–base properties. Water Research 38 (17):3685–3692. doi:10.1016/j.watres.2004.05.019

  • Garnier C, Pižeta I, Mounier S, Benaı̈m JY, Branica M (2004b) Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetry. Analytica Chimica Acta 505 (2):263–275. doi:10.1016/j.aca.2003.10.066

  • Grignon C, Sentenac H (1991) pH and Ionic Conditions in the Apoplast. Annual Review of Plant Physiology and Plant Molecular Biology 42 (1):103–128. doi:10.1146/annurev.pp.42.060191.000535

  • Guiné V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JMF (2006) Zinc Sorption to Three Gram-Negative Bacteria: Combined Titration, Modeling, and EXAFS Study. Environmental Science & Technology 40(6):1806–1813. doi:10.1021/es050981l

    Article  Google Scholar 

  • Gupta GP (2004) Plant Cell Biology. Discovery Publishing House, New Delhi

    Google Scholar 

  • Haynes RJ (1980) Ion exchange properties of roots and ionic interactions within the root apoplasm: Their role in ion accumulation by plants. Bot Rev 46(1):75–99. doi:10.1007/bf02860867

    Article  CAS  Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007) Nano-scale secondary ion mass spectrometry — A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry 39 (8):1835–1850. doi:10.1016/j.soilbio.2007.03.011

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of Botany 106(1):185–197. doi:10.1093/aob/mcq053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko TS (2010) Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells. Plant Physiology 153(2):603–610. doi:10.1104/pp. 110.154138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinraide TB (2001) Ion fluxes considered in terms of membrane-surface electrical potentials. Australian Journal of Plant Physiology 28(7):605–616. doi:10.1071/pp 01019

    CAS  Google Scholar 

  • Kinraide TB (2004) Possible Influence of Cell Walls upon Ion Concentrations at Plasma Membrane Surfaces. Toward a Comprehensive View of Cell-Surface Electrical Effects upon Ion Uptake, Intoxication, and Amelioration. Plant Physiol 136(3):3804–3813. doi:10.1104/pp. 104.043174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinraide TB (2006) Plasma membrane surface potential (ψpm) as a determinant of ion bioavailability: A critical analysis of new and published toxicological studies and a simplified method for the computation of plant ψpm. Environmental Toxicology and Chemistry 25(12):3188–3198. doi:10.1897/06-103r.1

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive Effects of Al3+, H+, and Other Cations on Root Elongation Considered in Terms of Cell-Surface Electrical Potential. Plant Physiol 99(4):1461–1468. doi:10.1104/pp. 99.4.1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopittke P, Blamey F, Menzies N (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil 303(1):217–227. doi:10.1007/s11104-007-9500-5

    Article  CAS  Google Scholar 

  • Kopittke P, McKenna B, Blamey F, Wehr J, Menzies N (2009a) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil 322(1):303–315. doi:10.1007/s11104-009-9917-0

    Article  CAS  Google Scholar 

  • Kopittke P, Menzies N (2006) Effect of Cu Toxicity on Growth of Cowpea (<i > Vigna unguiculata</i>). Plant and Soil 279(1):287–296. doi:10.1007/s11104-005-1578-z

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009b) Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Science of The Total Environment 407(16):4616–4621. doi:10.1016/j.scitotenv.2009.04.041

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution 150(2):280–287. doi:10.1016/j.envpol.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Kinraide TB, Wang P, Blamey FPC, Reichman SM, Menzies NW (2011) Alleviation of Cu and Pb Rhizotoxicities in Cowpea (Vigna unguiculata) as Related to Ion Activities at Root-Cell Plasma Membrane Surface. Environmental Science & Technology 45(11):4966–4973. doi:10.1021/es1041404

    Article  CAS  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33(1):35–51. doi:10.1007/s11738-010-0581-z

    Article  Google Scholar 

  • Kudo H, Kudo K, Ambo H, Uemura M, Kawai S (2011) Cadmium sorption to plasma membrane isolated from barley roots is impeded by copper association onto membranes. Plant Science 180(2):300–305. doi:10.1016/j.plantsci.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  • Lamport DTA, Várnai P (2013) Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist 197(1):58–64. doi:10.1111/nph.12005

    Article  CAS  PubMed  Google Scholar 

  • Legros S, Doelsch E, Feder F, Moussard G, Sansoulet J, Gaudet JP, Rigaud S, Doelsch IB, Macary HS, Bottero JY (2013) Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water–soil–plant system. Agriculture, Ecosystems & Environment 164 (0):70–79. doi:10.1016/j.agee.2012.09.008

  • Lenoble V, Garnier C, Masion A, Ziarelli F, Garnier JM (2008) Combination of 13C/113Cd NMR, potentiometry, and voltammetry in characterizing the interactions between Cd and two models of the main components of soil organic matter. Analytical and Bioanalytical Chemistry 390(2):749–757. doi:10.1007/s00216-007-1678-0

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Kottke I (2003) Subcellular localization of Cd in the root cells ofAllium sativum by electron energy loss spectroscopy. J Biosci 28(4):471–478. doi:10.1007/bf02705121

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of higher plants. Academic Press, second edition

  • Masion A, Bertsch PM (1997) Aluminium speciation in the presence of wheat root cell walls: a wet chemical study. Plant, Cell & Environment 20(4):504–512. doi:10.1046/j.1365-3040.1997.d01-86.x

    Article  CAS  Google Scholar 

  • McLaughlin S, Mulrine N, Gresalfi T, Vaio G, McLaughlin A (1981) Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. The Journal of General Physiology 77(4):445–473. doi:10.1085/jgp.77.4.445

    Article  CAS  PubMed  Google Scholar 

  • Meychik NR, Yermakov IP (1999) A new approach to the investigation on the tonogenic groups of root cell walls. Plant and Soil 217(1):257–264. doi:10.1023/a:1004675309128

    Article  Google Scholar 

  • Meychik NR, Yermakov IP (2001) Ion exchange properties of plant root cell walls. Plant and Soil 234(2):181–193. doi:10.1023/a:1017936318435

    Article  CAS  Google Scholar 

  • Moore KL, Schröder M, Wu Z, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Feng Ma J, Zhao F-J, Grovenor CRM (2011) High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots. Plant Physiology 156(2):913–924. doi:10.1104/pp. 111.173088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8(3):199–216. doi:10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Postma JWM, Keltjens WG, van Riemsdijk WH (2005) Calcium-(Organo) aluminum-proton Competition for Adsorption to Tomato Root Cell Walls: Experimental Data and Exchange Model Calculations. Environmental Science & Technology 39(14):5247–5254. doi:10.1021/es048138v

    Article  CAS  Google Scholar 

  • Ram LC (1980) Cation exchange capacity of plant roots in relation to nutrients uptake by shoot and grain as influenced by age. Plant and Soil 55(2):215–224. doi:10.1007/bf02181801

    Article  CAS  Google Scholar 

  • Reid RJ (2001) Mechanisms of micronutrient uptake in plants. Functional Plant Biology 28(7):661–668. doi:10.1071/PP01037

    Article  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60(13):3615–3635. doi:10.1093/jxb/erp245

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytologist 149(2):167–192. doi:10.1046/j.1469-8137.2001.00034.x

    Article  CAS  Google Scholar 

  • Sentenac H, Grignon C (1981) A Model for Predicting Ionic Equilibrium Concentrations in Cell Walls. Plant Physiol 68:415–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheldon A, Menzies N (2005) The Effect of Copper Toxicity on the Growth and Root Morphology of Rhodes Grass (<i > Chloris gayana</i > Knuth.) in Resin Buffered Solution Culture. Plant and Soil 278(1):341–349. doi:10.1007/s11104-005-8815-3

    Article  CAS  Google Scholar 

  • Shomer I, Novacky AJ, Pike SM, Yermiyahu U, Kinraide TB (2003) Electrical Potentials of Plant Cell Walls in Response to the Ionic Environment. Plant Physiology 133(1):411–422. doi:10.1104/pp. 103.024539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. The Plant Journal 63(5):870–879. doi:10.1111/j.1365-313X.2010.04279.x

    Article  CAS  PubMed  Google Scholar 

  • Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany 63(1–3):80–90. doi:10.1016/j.envexpbot.2007.10.034

    Article  CAS  Google Scholar 

  • Strasser O, Köhl K, Römheld V (1999) Overestimation of apoplastic Fe in roots of soil grown plants. Plant and Soil 210(2):179–189. doi:10.1023/a:1004650506592

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer Associates Sunderland, MA

    Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao F-J, McGrath SP (2006) A Terrestrial Biotic Ligand Model. 1. Development and Application to Cu and Ni Toxicities to Barley Root Elongation in Soils. Environmental Science & Technology 40(22):7085–7093. doi:10.1021/es061171s

    Article  CAS  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Current Opinion in Plant Biology 11(3):301–307. doi:10.1016/j.pbi.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  • Vulkan R, Yermiyahu U, Mingelgrin U, Rytwo G, Kinraide TB (2004) Sorption of Copper and Zinc to the Plasma Membrane of Wheat Root. Journal of Membrane Biology 202(2):97–104. doi:10.1007/s00232-004-0722-7

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg WJGM (2011) Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiol 155(2):808–820. doi:10.1104/pp. 110.165985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wershaw R, Mikita M (1987) NMR of humic substances and coal. Lewis Publishers, Chelsea

    Google Scholar 

  • Yang Z-B, Eticha D, Rao IM, Horst WJ (2010) Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). Journal of Experimental Botany 61(12):3245–3258. doi:10.1093/jxb/erq146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Smith A, Sekimoto H, Reid R (2001) Effect of membrane surface charge on nickel uptake by purified mung bean root protoplasts. Planta 213(5):788–793. doi:10.1007/s004250100555

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zeng M, Zhou X, Liao B-H, Liu J, Lei M, Zhong Q-Y, Zeng H (2013) Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environmental Toxicology and Chemistry 32(12):2719–2727. doi:10.1002/etc.2389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to French Environment and Energy Management Agency (ADEME) and the French Centre of Agricultural Research for Development (CIRAD) for funding the PhD scholarship of Stéphanie Guigues and INSU (CNRS) for funding the study via the EC2CO-CYTRIX call. The authors thank Patrick Cazevieille and Claire Chevassus-Rosset (CIRAD) for their technical support during the plant growth phase, Hélène Miche (CEREGE) for providing access to ICP-AES and Jean-Claude Davidian (Montpellier SupAgro) for his advice on root cell wall isolation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Guigues.

Additional information

Responsible Editor: Robert Reid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guigues, S., Bravin, M.N., Garnier, C. et al. Isolated cell walls exhibit cation binding properties distinct from those of plant roots. Plant Soil 381, 367–379 (2014). https://doi.org/10.1007/s11104-014-2138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2138-1

Keywords

Navigation