Advertisement

Plant and Soil

, Volume 381, Issue 1–2, pp 367–379 | Cite as

Isolated cell walls exhibit cation binding properties distinct from those of plant roots

  • Stéphanie Guigues
  • Matthieu N. Bravin
  • Cédric Garnier
  • Armand Masion
  • Emmanuel Doelsch
Regular Article

Abstract

Aims

The principal contributor to the cation binding properties of roots is currently considered to be the cell wall or, alternatively, the plasma membrane. The aim of this study was to highlight their respective contributions in the binding properties.

Methods

Cell walls of a dicotyledon (Solanum lycopersicum L.) and monocotyledon (Triticum aestivum L.) were isolated from roots and their binding properties were compared to those of their respective roots. Cell wall and root binding capacities were evaluated by potentiometric titrations and cation exchange capacity measurements, while their biochemical composition was analyzed by 13C-NMR spectroscopy.

Results

The lower binding capacity of isolated cell walls compared to roots revealed that cell plasma membranes had a higher binding site density than cell walls. The significant decrease in some NMR signals, i.e. carbonyl C, N alkyl/methoxyl C and alkyl C regions, suggested that carboxyl, amine and phosphate binding sites, borne by proteins and phospholipid plasma membranes, contribute to the binding capacity.

Conclusions

Cell walls and plasma membranes were found to be jointly involved in root binding properties and their respective contributions seemed vary between plants.

Keywords

Apoplast Cell plasma membrane Heavy metal Binding capacity Potentiometric titration 13C-NMR spectroscopy 

Notes

Acknowledgments

The authors are grateful to French Environment and Energy Management Agency (ADEME) and the French Centre of Agricultural Research for Development (CIRAD) for funding the PhD scholarship of Stéphanie Guigues and INSU (CNRS) for funding the study via the EC2CO-CYTRIX call. The authors thank Patrick Cazevieille and Claire Chevassus-Rosset (CIRAD) for their technical support during the plant growth phase, Hélène Miche (CEREGE) for providing access to ICP-AES and Jean-Claude Davidian (Montpellier SupAgro) for his advice on root cell wall isolation.

References

  1. Ahmady-Asbchin S, Andrès Y, Gérente C, Cloirec PL (2008) Biosorption of Cu (II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresource Technology 99(14):6150–6155. doi: 10.1016/j.biortech.2007.12.040 PubMedCrossRefGoogle Scholar
  2. Allan DL, Jarrell WM (1989) Proton and Copper Adsorption to Maize and Soybean Root Cell Walls. Plant Physiol 89(3):823–832. doi: 10.1104/pp. 89.3.823 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bastías E, Alcaraz-López C, Bonilla I, Martínez-Ballesta MC, Bolaños L, Carvajal M (2010) Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium. Journal of Plant Physiology 167(1):54–60. doi: 10.1016/j.jplph.2009.07.014 PubMedCrossRefGoogle Scholar
  4. Bravin M, Merrer B, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant and Soil 331(1–2):91–104. doi: 10.1007/s11104-009-0235-3 CrossRefGoogle Scholar
  5. Cathala N, Ghorbal MH, Lamant A, Salsac L (1978) Obtention de parois cellulosiques à l’aide d’un détergent : étude préliminaire de leur composition minérale. C R Acad Sc Paris t 286:1025–1027Google Scholar
  6. Cohen JA, Cohen M (1981) Adsorption of monovalent and divalent cations by phospholipid membranes. The monomer-dimer problem Biophysical journal 36(3):623–651Google Scholar
  7. Dœlsch E, Deroche B, Van de Kerchove V (2006b) Impact of sewage sludge spreading on heavy metal speciation in tropical soils (Réunion, Indian Ocean). Chemosphere 65 (2):286–293. doi: 10.1016/j.chemosphere.2006.02.046
  8. Doelsch E, Van de Kerchove V, Saint Macary H (2006a) Heavy metal content in soils of Réunion (Indian Ocean). Geoderma 134 (1–2):119–134. doi: 10.1016/j.geoderma.2005.09.003
  9. Dufey JE, Braun R (1986) Cation Exchange Capacity of Roots : Tirtation Sum of Exchangeable Cations, Copper Adsorption. Journal of Plant Nutrition 9(8):1147–1155CrossRefGoogle Scholar
  10. Garnier C, Mounier S, Benaïm JY (2004a) Influence of dissolved organic carbon content on modelling natural organic matter acid–base properties. Water Research 38 (17):3685–3692. doi: 10.1016/j.watres.2004.05.019
  11. Garnier C, Pižeta I, Mounier S, Benaı̈m JY, Branica M (2004b) Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetry. Analytica Chimica Acta 505 (2):263–275. doi: 10.1016/j.aca.2003.10.066
  12. Grignon C, Sentenac H (1991) pH and Ionic Conditions in the Apoplast. Annual Review of Plant Physiology and Plant Molecular Biology 42 (1):103–128. doi: 10.1146/annurev.pp.42.060191.000535
  13. Guiné V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JMF (2006) Zinc Sorption to Three Gram-Negative Bacteria: Combined Titration, Modeling, and EXAFS Study. Environmental Science & Technology 40(6):1806–1813. doi: 10.1021/es050981l CrossRefGoogle Scholar
  14. Gupta GP (2004) Plant Cell Biology. Discovery Publishing House, New DelhiGoogle Scholar
  15. Haynes RJ (1980) Ion exchange properties of roots and ionic interactions within the root apoplasm: Their role in ion accumulation by plants. Bot Rev 46(1):75–99. doi: 10.1007/bf02860867 CrossRefGoogle Scholar
  16. Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007) Nano-scale secondary ion mass spectrometry — A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry 39 (8):1835–1850. doi: 10.1016/j.soilbio.2007.03.011
  17. Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of Botany 106(1):185–197. doi: 10.1093/aob/mcq053 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko TS (2010) Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells. Plant Physiology 153(2):603–610. doi: 10.1104/pp. 110.154138 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kinraide TB (2001) Ion fluxes considered in terms of membrane-surface electrical potentials. Australian Journal of Plant Physiology 28(7):605–616. doi: 10.1071/pp 01019 Google Scholar
  20. Kinraide TB (2004) Possible Influence of Cell Walls upon Ion Concentrations at Plasma Membrane Surfaces. Toward a Comprehensive View of Cell-Surface Electrical Effects upon Ion Uptake, Intoxication, and Amelioration. Plant Physiol 136(3):3804–3813. doi: 10.1104/pp. 104.043174 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kinraide TB (2006) Plasma membrane surface potential (ψpm) as a determinant of ion bioavailability: A critical analysis of new and published toxicological studies and a simplified method for the computation of plant ψpm. Environmental Toxicology and Chemistry 25(12):3188–3198. doi: 10.1897/06-103r.1 PubMedCrossRefGoogle Scholar
  22. Kinraide TB, Ryan PR, Kochian LV (1992) Interactive Effects of Al3+, H+, and Other Cations on Root Elongation Considered in Terms of Cell-Surface Electrical Potential. Plant Physiol 99(4):1461–1468. doi: 10.1104/pp. 99.4.1461 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kopittke P, Blamey F, Menzies N (2008) Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil 303(1):217–227. doi: 10.1007/s11104-007-9500-5 CrossRefGoogle Scholar
  24. Kopittke P, McKenna B, Blamey F, Wehr J, Menzies N (2009a) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil 322(1):303–315. doi: 10.1007/s11104-009-9917-0 CrossRefGoogle Scholar
  25. Kopittke P, Menzies N (2006) Effect of Cu Toxicity on Growth of Cowpea (<i > Vigna unguiculata</i>). Plant and Soil 279(1):287–296. doi: 10.1007/s11104-005-1578-z CrossRefGoogle Scholar
  26. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009b) Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Science of The Total Environment 407(16):4616–4621. doi: 10.1016/j.scitotenv.2009.04.041 PubMedCrossRefGoogle Scholar
  27. Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution 150(2):280–287. doi: 10.1016/j.envpol.2007.01.011 PubMedCrossRefGoogle Scholar
  28. Kopittke PM, Kinraide TB, Wang P, Blamey FPC, Reichman SM, Menzies NW (2011) Alleviation of Cu and Pb Rhizotoxicities in Cowpea (Vigna unguiculata) as Related to Ion Activities at Root-Cell Plasma Membrane Surface. Environmental Science & Technology 45(11):4966–4973. doi: 10.1021/es1041404 CrossRefGoogle Scholar
  29. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33(1):35–51. doi: 10.1007/s11738-010-0581-z CrossRefGoogle Scholar
  30. Kudo H, Kudo K, Ambo H, Uemura M, Kawai S (2011) Cadmium sorption to plasma membrane isolated from barley roots is impeded by copper association onto membranes. Plant Science 180(2):300–305. doi: 10.1016/j.plantsci.2010.09.008 PubMedCrossRefGoogle Scholar
  31. Lamport DTA, Várnai P (2013) Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist 197(1):58–64. doi: 10.1111/nph.12005 PubMedCrossRefGoogle Scholar
  32. Legros S, Doelsch E, Feder F, Moussard G, Sansoulet J, Gaudet JP, Rigaud S, Doelsch IB, Macary HS, Bottero JY (2013) Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water–soil–plant system. Agriculture, Ecosystems & Environment 164 (0):70–79. doi: 10.1016/j.agee.2012.09.008
  33. Lenoble V, Garnier C, Masion A, Ziarelli F, Garnier JM (2008) Combination of 13C/113Cd NMR, potentiometry, and voltammetry in characterizing the interactions between Cd and two models of the main components of soil organic matter. Analytical and Bioanalytical Chemistry 390(2):749–757. doi: 10.1007/s00216-007-1678-0 PubMedCrossRefGoogle Scholar
  34. Liu D, Kottke I (2003) Subcellular localization of Cd in the root cells ofAllium sativum by electron energy loss spectroscopy. J Biosci 28(4):471–478. doi: 10.1007/bf02705121 PubMedCrossRefGoogle Scholar
  35. Marschner H (1995) Mineral Nutrition of higher plants. Academic Press, second editionGoogle Scholar
  36. Masion A, Bertsch PM (1997) Aluminium speciation in the presence of wheat root cell walls: a wet chemical study. Plant, Cell & Environment 20(4):504–512. doi: 10.1046/j.1365-3040.1997.d01-86.x CrossRefGoogle Scholar
  37. McLaughlin S, Mulrine N, Gresalfi T, Vaio G, McLaughlin A (1981) Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. The Journal of General Physiology 77(4):445–473. doi: 10.1085/jgp.77.4.445 PubMedCrossRefGoogle Scholar
  38. Meychik NR, Yermakov IP (1999) A new approach to the investigation on the tonogenic groups of root cell walls. Plant and Soil 217(1):257–264. doi: 10.1023/a:1004675309128 CrossRefGoogle Scholar
  39. Meychik NR, Yermakov IP (2001) Ion exchange properties of plant root cell walls. Plant and Soil 234(2):181–193. doi: 10.1023/a:1017936318435 CrossRefGoogle Scholar
  40. Moore KL, Schröder M, Wu Z, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Feng Ma J, Zhao F-J, Grovenor CRM (2011) High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots. Plant Physiology 156(2):913–924. doi: 10.1104/pp. 111.173088 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8(3):199–216. doi: 10.1007/s10311-010-0297-8 CrossRefGoogle Scholar
  42. Postma JWM, Keltjens WG, van Riemsdijk WH (2005) Calcium-(Organo) aluminum-proton Competition for Adsorption to Tomato Root Cell Walls: Experimental Data and Exchange Model Calculations. Environmental Science & Technology 39(14):5247–5254. doi: 10.1021/es048138v CrossRefGoogle Scholar
  43. Ram LC (1980) Cation exchange capacity of plant roots in relation to nutrients uptake by shoot and grain as influenced by age. Plant and Soil 55(2):215–224. doi: 10.1007/bf02181801 CrossRefGoogle Scholar
  44. Reid RJ (2001) Mechanisms of micronutrient uptake in plants. Functional Plant Biology 28(7):661–668. doi: 10.1071/PP01037 CrossRefGoogle Scholar
  45. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60(13):3615–3635. doi: 10.1093/jxb/erp245 PubMedCrossRefGoogle Scholar
  46. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytologist 149(2):167–192. doi: 10.1046/j.1469-8137.2001.00034.x CrossRefGoogle Scholar
  47. Sentenac H, Grignon C (1981) A Model for Predicting Ionic Equilibrium Concentrations in Cell Walls. Plant Physiol 68:415–419PubMedCentralPubMedCrossRefGoogle Scholar
  48. Sheldon A, Menzies N (2005) The Effect of Copper Toxicity on the Growth and Root Morphology of Rhodes Grass (<i > Chloris gayana</i > Knuth.) in Resin Buffered Solution Culture. Plant and Soil 278(1):341–349. doi: 10.1007/s11104-005-8815-3 CrossRefGoogle Scholar
  49. Shomer I, Novacky AJ, Pike SM, Yermiyahu U, Kinraide TB (2003) Electrical Potentials of Plant Cell Walls in Response to the Ionic Environment. Plant Physiology 133(1):411–422. doi: 10.1104/pp. 103.024539 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. The Plant Journal 63(5):870–879. doi: 10.1111/j.1365-313X.2010.04279.x PubMedCrossRefGoogle Scholar
  51. Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany 63(1–3):80–90. doi: 10.1016/j.envexpbot.2007.10.034 CrossRefGoogle Scholar
  52. Strasser O, Köhl K, Römheld V (1999) Overestimation of apoplastic Fe in roots of soil grown plants. Plant and Soil 210(2):179–189. doi: 10.1023/a:1004650506592 CrossRefGoogle Scholar
  53. Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer Associates Sunderland, MAGoogle Scholar
  54. Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao F-J, McGrath SP (2006) A Terrestrial Biotic Ligand Model. 1. Development and Application to Cu and Ni Toxicities to Barley Root Elongation in Soils. Environmental Science & Technology 40(22):7085–7093. doi: 10.1021/es061171s CrossRefGoogle Scholar
  55. Vogel J (2008) Unique aspects of the grass cell wall. Current Opinion in Plant Biology 11(3):301–307. doi: 10.1016/j.pbi.2008.03.002 PubMedCrossRefGoogle Scholar
  56. Vulkan R, Yermiyahu U, Mingelgrin U, Rytwo G, Kinraide TB (2004) Sorption of Copper and Zinc to the Plasma Membrane of Wheat Root. Journal of Membrane Biology 202(2):97–104. doi: 10.1007/s00232-004-0722-7 PubMedCrossRefGoogle Scholar
  57. Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg WJGM (2011) Plasma Membrane Surface Potential: Dual Effects upon Ion Uptake and Toxicity. Plant Physiol 155(2):808–820. doi: 10.1104/pp. 110.165985 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wershaw R, Mikita M (1987) NMR of humic substances and coal. Lewis Publishers, ChelseaGoogle Scholar
  59. Yang Z-B, Eticha D, Rao IM, Horst WJ (2010) Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). Journal of Experimental Botany 61(12):3245–3258. doi: 10.1093/jxb/erq146 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Zhang Q, Smith A, Sekimoto H, Reid R (2001) Effect of membrane surface charge on nickel uptake by purified mung bean root protoplasts. Planta 213(5):788–793. doi: 10.1007/s004250100555 PubMedCrossRefGoogle Scholar
  61. Zhou H, Zeng M, Zhou X, Liao B-H, Liu J, Lei M, Zhong Q-Y, Zeng H (2013) Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environmental Toxicology and Chemistry 32(12):2719–2727. doi: 10.1002/etc.2389 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stéphanie Guigues
    • 1
    • 2
  • Matthieu N. Bravin
    • 3
  • Cédric Garnier
    • 4
  • Armand Masion
    • 5
  • Emmanuel Doelsch
    • 1
  1. 1.CIRADMontpellierFrance
  2. 2.ADEMEAngers cedex 01France
  3. 3.CIRADSaint-DenisFrance
  4. 4.Université de ToulonLa GardeFrance
  5. 5.Aix-Marseille UniversitéAix-en-ProvenceFrance

Personalised recommendations