Skip to main content
Log in

Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls? To answer this question we investigated Cu2+ and Ni2+ -exchange capacities of isolated root cell walls of seven plant species. As the ionization degree of carboxyl groups and consequently their ability to bind metal ions is dependent upon the solution pH it is possible to reveal the predominant sites of metal binding at a certain pH.

Methods

Amounts of different ionogenic groups in the isolated cell walls was determined by potentiometric titration, Cu2+ and Ni2+ binding capacities – by measuring the amount of adsorbed metal ions after incubation in 1 mM CuCl2 or NiCl2 at different pHs.

Results

Carboxyl groups of polygalacturonic acid (PGA) are the only Cu2+ and Ni2+ binding sites at pH < 5. At рН ≥ 5 the ratio between the amount of the metal bound and the amount of PGA carboxyl groups is >1 in some plant species, indicating the involvement of carboxyl groups of hydroxycinnamic acids (HCA) in Cu2+ and Ni2+ binding. HCA carboxyl groups in cell walls of grasses bind 40–85 % of total cell wall Cu2+ and Ni2+ at рН ≥ 5, but in dicotyledons their contribution does not exceed 45 % and varies widely between species.

Conclusion

Carboxyl groups of both polygalacturonic and hydroxycinnamic acids provide Cu2+ and Ni2+ adsorption sites in root cell walls. Their relative content depends on plant species, and ability to bind Cu2+ and Ni2+ – on the solution pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Men+ :

heavy metal cations

S Cu (S Ni):

Cu2+-(Ni2+-)exchange capacity of isolated cell walls

PGA:

polygalacturonic acid

HCA:

hydroxycinnamic acids

S PGA (S HCA):

PGA (HCA) carboxyl groups content

References

  • Allan DL, Jarrel WM (1989) Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol 89:823–832

    Google Scholar 

  • Brunner I, Luster J, Gunthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  PubMed  Google Scholar 

  • Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  • Colzi I, Arnetoli M, Gallo A, Doumett S, Bubba MD, Pignattelli S, Gabbrielli R, Gonnelli C (2012) Copper tolerance strategies involving the root cell wall pectins in Silene paradoxa L. Env Exp Bot 78:91–98

    Article  CAS  Google Scholar 

  • Davarski KA, Manolov SN, Petrova IN, Mavrov VD (1994) Complex equilibria in the system M2+-polygalacturonic acid (pectin) - H2O (M = Co, Ni, Cu, Zn, Cd and Pb). J Coord Chem 33:75–81

    Article  CAS  Google Scholar 

  • Doblin MS, Pettolino F, Bacic A (2010) Plant cell walls, the skeleton of the plant world. Funct Plant Biol 37:357–381

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Helfferich F (1962) Ion exchange. Mc Graw-Hill Publ, New York

    Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106(1):185–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki K, Sakurai K, Takahashi E (1990) Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci Plant Nutr 36(3):431–439

    Article  Google Scholar 

  • Kinraide TB (2009) Improved scales for metal ion softness and toxicity. Environ Toxicol Chem 28:525–533

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101(9):1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Neuhaus HE, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931

    Article  CAS  PubMed  Google Scholar 

  • Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167:358–364

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ, Scheckel KG, Lombi E (2011) In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol 156:663–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non–accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed Central  PubMed  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals, polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  Google Scholar 

  • Leykin YA, Meychik NR, Solovyov VK (1978) Acid–base equilibrium of polyamfolites with pyridine and phosphate groups. Phys Chem (Moscow) 52:1420–1424 (in Russian)

    Google Scholar 

  • Libinson G (1969) Physico-chemical properties of carboxylic ion-exchangers. Nauka, Moscow (in Russian)

    Google Scholar 

  • Lou L, Shen Z, Li X (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper–enriched soils. Env Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Marczenko Z (1968) Spectrophotometric determination of elements. Mir, Moscow, in Russian

    Google Scholar 

  • Meychik NR, Yermakov IP (1999) A new approach to the investigation on the ionogenic groups of root cell walls. Plant Soil 217:257–264

    Article  Google Scholar 

  • Meychik NR, Yermakov IP (2001) Ion-exchange properties of plant root cell walls. Plant Soil 234:181–193

    Article  CAS  Google Scholar 

  • Meychik NR, Yermakov IP, Prokoptseva OS (2003) Diffusion of an organic cation into root cell walls. Biochemistry (Biokhimiya) 68(7):760–771 (in Russian)

    Article  CAS  Google Scholar 

  • Meychik NR, Nikolaeva JI, Yermakov IP (2005) Ion-exchange properties of the root cell walls isolated from the halophyte plants (Suaeda altissima L.) grown under conditions of different salinity. Plant Soil 277:163–174

    Article  CAS  Google Scholar 

  • Meychik NR, Matveyeva NP, Nikolaeva YI, Chaikova AV, Yermakov IP (2006) Features of ionogenic group composition in polymeric matrix of lily pollen wall. Biochem Mosc 71:893–899 (in Russian)

    Article  CAS  Google Scholar 

  • Meychik NR, Nikolaeva YI, Yermakov IP (2009) Nonaqueous titration of amino groups in polymeric matrix of plant cell walls. Biochem Mosc 74:1145–1151 (in Russian)

    Article  Google Scholar 

  • Meychik NR, Yermakov IP, Nikolaeva YI, Khonarmand SD (2010) Ion-exchange properties of cell walls in chickpea cultivars with different sensitivities to salinity. Russ J Plant Physiol 57:620–630 (in Russian)

    Article  CAS  Google Scholar 

  • Nishizono H, Ichikawa H, Suziki S, Ishii F (1987) The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101:15–20

    Article  CAS  Google Scholar 

  • Peng H, Yang X, Tian S (2005) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J Zhejiang Univ Sci B 6(5):311–318

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilon M (2011) Moving copper in plants. New Phytol 192:305–307

    Article  CAS  PubMed  Google Scholar 

  • Redjala T, Sterckeman T, Skiker S, Echevarria G (2010) Contribution of apoplast and symplast to short term nickel uptake by corn and Leptoplax emarginata roots. Env Exp Bot 68:99–106

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis and oligogalaturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Dountov SD (1985) Potassium, sodium and chloride concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australius R. Aust J Plant Physiol 12:471–479

    Article  CAS  Google Scholar 

  • Talbot LD, Ray PM (1992) Molecular size and separability features of pea cell wall polysaccharides. Plant Physiol 98:357–368

    Article  Google Scholar 

  • Thompson JE, Fry SC (2000) Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–286

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox P (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Kuo J, Tang C (2001) Using confocal laser scanning microscopy to measure apoplastic pH change in roots of Lupinus angustifolius L. in response to high pH. Ann Bot 87:47–52

    Article  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhua YG (2009) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Research Foundation (№ 14-14-00298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataly Meychik.

Additional information

Responsible Editor: Fangjie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meychik, N., Nikolaeva, Y., Kushunina, M. et al. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls?. Plant Soil 381, 25–34 (2014). https://doi.org/10.1007/s11104-014-2111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2111-z

Keywords

Navigation