Plant and Soil

, Volume 380, Issue 1–2, pp 361–374 | Cite as

Environmental filtering of species with different functional traits into plant assemblages across a tropical coniferous-broadleaved forest ecotone

  • Junyan Zhang
  • Kewu Cheng
  • Runguo Zang
  • Yi Ding
Regular Article


Background and aims

Ecotones between coniferous and broadleaved forests in tropical regions are poorly understood. Our aim was to understand community assembly across the ecotones by integrating changes in both plant functional traits and environmental factors.


The coniferous, ecotone, and broadleaved zones along each of the 15 investigation transects were discerned and surveyed. We measured eight functional traits of 174 woody species and 10 environmental factors along transects across the ecotones. We assessed between-site differences by using ANOVA, and correlations between functional traits and the environmental factors by RDA ordination.


With the variation of vegetation zones from coniferous through the ecotone to broadleaved, the functional traits of plants at the community level changed in accordance with the changes in soil and light regimes. The low soil nutrients and low soil water in the coniferous zone were the major constraints for most lowland rain forest species with acquisitive traits, while high soil nutrients, high soil water and low light in the broadleaved zone had strong filtering effects on the conifer and tropical monsoon rainforest species with conservative traits.


The soil and light conditions were the major determinants for the functional community structure of the vegetation types across the tropical coniferous and broadleaved forest ecotone.


Plant functional traits Ecotone Tropical coniferous forest Tropical lowland rain forest Tropical monsoon rainforest Environmental factors 



Coniferous forest zone


The ecotone zone


Broadleaved forest zone


Specific leaf area


Leaf dry matter content


Leaf total chlorophyll content


Leaf nitrogen concentration per mass


Leaf phosphorus concentration per mass


Leaf potassium concentration per mass


Wood density


Maximum plant height


Canopy openness


Soil water content


Soil organic matter content


Total nitrogen content


Total phosphorus content


Total potassium content


Available nitrogen content


Available phosphorus content


Available potassium content



We are grateful to the many people who have contributed to this study, especially Mr. Xiusen Yang and Mr. Rucai Li in the Bawangling National Nature Reserve for their assistance of specimen identification and field investigation work. We thank the two anonymous referees for their constructive comments, which have greatly improved the earlier version of this paper. This study was funded by the national forestry research project for public welfare (201304308).


  1. Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457. doi: 10.1007/s004420100805 CrossRefGoogle Scholar
  2. Ameztegui A, Coll L (2011) Tree dynamics and co-existence in the montane–sub-alpine ecotone: the role of different light-induced strategies. J Veg Sci 22:1049–1061. doi: 10.1111/j.1654-1103.2011.01316.x CrossRefGoogle Scholar
  3. Arndt SK (2006) Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant Soil 285:1–3. doi: 10.1007/s11104-006-9097-0 CrossRefGoogle Scholar
  4. Aune S, Hofgaard A, Söderström L (2011) Contrasting climate-and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41:437–449. doi: 10.1139/X10-086 CrossRefGoogle Scholar
  5. Baraloto C, Timothy Paine C, Poorter L, Beauchene J, Bonal D, Domenach AM, Hérault B, Patiño S, Roggy JC, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347. doi: 10.1111/j.1461-0248.2010.01517.x PubMedCrossRefGoogle Scholar
  6. Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472. doi: 10.1111/j.1466-8238.2009.00464.x CrossRefGoogle Scholar
  7. Briggs JS, Wall SBV, Jenkins SH (2009) Forest rodents provide directed dispersal of Jeffrey pine seeds. Ecology 90:675–687. doi: 10.1890/07-0542.1 PubMedCrossRefGoogle Scholar
  8. Carter V, Gammon PT, Garrett MK (1994) Ecotone dynamics and boundary determination in the Great Dismal Swamp. Ecol Appl 4:189–203. doi: 10.2307/1942128 CrossRefGoogle Scholar
  9. Castro-Díez P (2012) Functional traits analyses: scaling-up from species to community level. Plant Soil 357:9–12. doi: 10.1007/s11104-012-1185-8 CrossRefGoogle Scholar
  10. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi: 10.1111/j.1461-0248.2009.01285.x PubMedCrossRefGoogle Scholar
  11. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  12. Cornelissen J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich PB, Ter Steege H, Morgan H, Van Der Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi: 10.1071/BT02124 CrossRefGoogle Scholar
  13. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 PubMedCrossRefGoogle Scholar
  14. Delagrange S, Messier C, Lechowicz MJ, Dizengremel P (2004) Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiol 24:775–784. doi: 10.1093/treephys/24.7.775 PubMedCrossRefGoogle Scholar
  15. Ding Y, Zang RG, Liu SR, He FL, Letcher SG (2012) Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation. Biol Conserv 145:225–233. doi: 10.1016/j.biocon.2011.11.009 CrossRefGoogle Scholar
  16. Douma JC, de Haan MW, Aerts R, Witte JPM, van Bodegom PM (2012) Succession‐induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. J Ecol 100:366–380. doi: 10.1111/j.1365-2745.2011.01932.x CrossRefGoogle Scholar
  17. Farm K, Garden B, Chau LKC, Chan BPL, Fellowes JR, Hau BCH, Lau MWN, Shing LK, Graham T, Sai-Chit N (2001) Report of rapid biodiversity assessments at Bawangling National Nature Reserve and Wangxia Limestone Forest, Western Hainan, 3 to 8 April 1998. South China Forest Biodiversity Survey Report Series (Online Simplified Version) No 2Google Scholar
  18. Franklin J, Bergman E (2011) Patterns of pine regeneration following a large, severe wildfire in the mountains of southern California. Can J For Res 41:810–821. doi: 10.1139/x11-024 CrossRefGoogle Scholar
  19. Franklin J, Spears-Lebrun LA, Deutschman DH, Marsden K (2006) Impact of a high-intensity fire on mixed evergreen and mixed conifer forests in the Peninsular Ranges of southern California, USA. For Ecol Manag 235:18–29. doi: 10.1016/j.foreco.2006.07.023 CrossRefGoogle Scholar
  20. Frazer GW, Canham C, Lertzman K (1999) Gap Light Analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, 36Google Scholar
  21. Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32:849–862. doi: 10.1111/j.1365-2699.2004.01182.x CrossRefGoogle Scholar
  22. Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi: 10.1890/03-0799 CrossRefGoogle Scholar
  23. Gosz JR (1993) Ecotone hierarchies. Ecol Appl 3:370–376. doi: 10.2307/1941905 CrossRefGoogle Scholar
  24. Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29–51. doi: 10.1016/S0034-4257(99)00056-5 CrossRefGoogle Scholar
  25. Gravel D, Canham CD, Beaudet M, Messier C (2010) Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos 119:475–484. doi: 10.1111/j.1600-0706.2009.17441.x CrossRefGoogle Scholar
  26. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi: 10.1007/s004420100628 CrossRefGoogle Scholar
  27. Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184:27–42. doi: 10.1007/s11258-005-9049-4 CrossRefGoogle Scholar
  28. Hoffmann W, Franco A, Moreira M, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct Ecol 19:932–940. doi: 10.1111/j.1365-2435.2005.01045.x CrossRefGoogle Scholar
  29. Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi: 10.1111/j.1461-0248.2012.01789.x PubMedCrossRefGoogle Scholar
  30. James JJ, Sheley RL, Erickson T, Rollins KS, Taylor MH, Dixon KW (2013) A systems approach to restoring degraded drylands. J Appl Ecol 50:730–739. doi: 10.1111/1365-2664.12090 CrossRefGoogle Scholar
  31. Körner C, Hoch G (2006) A test of treeline theory on a montane permafrost island. Arct Antarct Alp Res 38:113–119. doi: 10.1657/1523-0430(2006)038[0113:ATOTTO]2.0.CO;2 CrossRefGoogle Scholar
  32. Lamb EG, Mallik AU (2003) Plant species traits across a riparian-zone/forest ecotone. J Veg Sci 14:853–858. doi: 10.1111/j.1654-1103.2003.tb02218.x CrossRefGoogle Scholar
  33. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi: 10.1046/j.1365-2435.2002.00664.x CrossRefGoogle Scholar
  34. Lavorel S, Grigulis K, McIntyre S, Williams NS, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147. doi: 10.1111/j.1365-2435.2007.01339.x Google Scholar
  35. Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398. doi: 10.1890/08-1449.1 PubMedCrossRefGoogle Scholar
  36. Liu WD, Zang RG, Ding Y, Zhang WY (2013) Specie-area relationships of different plant functional groups in tropical monsoon rainforests(Hainan Island, China). Pol J Ecol 61:3–11Google Scholar
  37. Lloyd KM, McQueen AAM, Lee BJ, Wilson RCB, Walker S, Wilson JB (2000) Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J Veg Sci 11:903–910. doi: 10.2307/3236560 CrossRefGoogle Scholar
  38. Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez IE, Tauro A, Bongers F (2013) Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94:1211–1216. doi: 10.1890/12-1850.1 PubMedCrossRefGoogle Scholar
  39. MacDonald G, Kremenetski K, Beilman D (2008) Climate change and the northern Russian treeline zone. Phil Trans R Soc B 363:2283–2299. doi: 10.1098/rstb.2007.2200 CrossRefGoogle Scholar
  40. Mallik AU, Lamb EG, Rasid H (2001) Vegetation zonation among the microhabitats in a lacustrine environment: analysis and application of belowground species trait patterns. Ecol Eng 18:135–146. doi: 10.1016/S0925-8574(01)00069-6 CrossRefGoogle Scholar
  41. Marimon BS, De Lima SE, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of Northeastern Mato Grosso, Brazil. Iv. An analysis of the Cerrado–Amazonian Forest Ecotone. Edinb J Bot 63:323–341. doi: 10.1017/s0960428606000576 CrossRefGoogle Scholar
  42. Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ 34:137–148. doi: 10.1111/j.1365-3040.2010.02231.x PubMedCrossRefGoogle Scholar
  43. Martin PH, Sherman RE, Fahey TJ (2007) Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. J Biogeogr 34:1792–1806. doi: 10.1111/j.1365-2699.2007.01726.x CrossRefGoogle Scholar
  44. Martin PH, Fahey TJ, Sherman RE (2011) Vegetation zonation in a neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533–543. doi: 10.1111/j.1744-7429.2010.00735.x CrossRefGoogle Scholar
  45. Martín-Queller E, Diez JM, Ibáñez I, Saura S (2013) Effects of silviculture on native tree species richness: interactions between management, landscape context and regional climate. J Appl Ecol 50:775–785. doi: 10.1111/1365-2664.12064 CrossRefGoogle Scholar
  46. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi: 10.1016/j.tree.2006.02.002 PubMedCrossRefGoogle Scholar
  47. Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469. doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 CrossRefGoogle Scholar
  48. Niklas KJ, Owens T, Reich PB, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642. doi: 10.1111/j.1461-0248.2005.00759.x CrossRefGoogle Scholar
  49. Odum EP (1983) Basic ecology. Saunders College Publishing, PhiladelphiaGoogle Scholar
  50. Ordoñez JC, Van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. doi: 10.1111/j.1466-8238.2008.00441.x CrossRefGoogle Scholar
  51. Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083. doi: 10.1111/j.1365-2745.2010.01679.x CrossRefGoogle Scholar
  52. Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744. doi: 10.1126/science.1231574 PubMedCrossRefGoogle Scholar
  53. Poorter L (2007) Are species adapted to their regeneration niche, adult niche, or both? Am Nat 169:433–442. doi: 10.1086/512045 PubMedCrossRefGoogle Scholar
  54. Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743. doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 PubMedCrossRefGoogle Scholar
  55. Poorter L, Wright SJ, Paz H, Ackerly D, Condit R, Ibarra-Manríquez G, Harms KE, Licona J, Martinez-Ramos M, Mazer S (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920. doi: 10.1890/07-0207.1 PubMedCrossRefGoogle Scholar
  56. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588. doi: 10.1111/j.1469-8137.2009.02830.x PubMedCrossRefGoogle Scholar
  57. Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña‐Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492. doi: 10.1111/j.1469-8137.2009.03092.x PubMedCrossRefGoogle Scholar
  58. Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325. doi: 10.2307/1312492 CrossRefGoogle Scholar
  59. Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889. doi: 10.1111/j.1365-2745.2005.01030.x CrossRefGoogle Scholar
  60. ter Braak C, Smilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  61. Tolman DA (2006) Characterization of the ecotone between Jeffrey pine savannas and Darlingtonia fens in southwestern Oregon. MADRONO 53:199–210. doi: 10.3120/ CrossRefGoogle Scholar
  62. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257. doi: 10.1146/annurev.ecolsys.39.110707.173506 CrossRefGoogle Scholar
  63. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi: 10.1890/07-1206.1 PubMedCrossRefGoogle Scholar
  64. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. doi: 10.1111/j.2007.0030-1299.15559.x CrossRefGoogle Scholar
  65. Walker S, Wilson JB, Steel JB, Rapson GL, Smith B, King WM, Cottam YH (2003) Properties of ecotones: evidence from five ecotones objectively determined from a coastal vegetation gradient. J Veg Sci 14:579–590. doi: 10.1111/j.1654-1103.2003.tb02185.x CrossRefGoogle Scholar
  66. Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268. doi: 10.1016/j.tree.2006.02.004 PubMedCrossRefGoogle Scholar
  67. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  68. Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–427. doi: 10.2307/3565577 CrossRefGoogle Scholar
  69. Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336. doi: 10.1016/S0065-2504(08)60149-X CrossRefGoogle Scholar
  70. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi: 10.1038/nature02403 PubMedCrossRefGoogle Scholar
  71. Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674. doi: 10.1890/09-2335.1 PubMedCrossRefGoogle Scholar
  72. Wulf M, Heinken T (2008) Colonization of recent coniferous versus deciduous forest stands by vascular plants at the local scale. Appl Veg Sci 11:307–316. doi: 10.3170/2008-7-18432 CrossRefGoogle Scholar
  73. Yan BG, Zhang J, Liu Y, Li ZB, Huang X, Yang WQ, Prinzing A (2012) Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J Veg Sci 23:698–708. doi: 10.1111/j.1654-1103.2011.01384.x CrossRefGoogle Scholar
  74. Zang RG, Ding Y, Zhang ZD, Deng FY, Mao PL (2010) Ecological foundations of conservation and restoration for the major functional groups in tropical natural forests on Hainan Island. Beijing, ChinaGoogle Scholar
  75. Zhan CS, Song XM, Xia J, Tong C (2013) An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environ Model Softw 41:39–52. doi: 10.1016/j.envsoft.2012.10.009 CrossRefGoogle Scholar
  76. Zhang ZD, Zang RG, Convertino M (2013) Predicting the distribution of potential natural vegetation based on species functional groups in fragmented and species-rich forests. Plant Ecol Evol 146:261–271. doi: 10.5091/plecevo.2013.783 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Junyan Zhang
    • 1
    • 2
  • Kewu Cheng
    • 3
  • Runguo Zang
    • 1
    • 2
  • Yi Ding
    • 1
    • 2
  1. 1.Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
  2. 2.Key Laboratory of Forest Ecology and Environment of State Forestry AdministrationChinese Academy of ForestryBeijingChina
  3. 3.College of Landscape Architecture and TourismAgricultural University of HebeiBaodingChina

Personalised recommendations