Plant and Soil

, Volume 378, Issue 1–2, pp 397–412 | Cite as

N2 fixation of pea hypernodulating mutants is more tolerant to root pruning than that of wild type

  • Alexandre-Brice Cazenave
  • Christophe Salon
  • Christian Jeudy
  • Gérard Duc
  • Anne-Sophie Voisin
Regular Article


Background and aims

As a legume, pea plant has the ability to symbiotically fix N2. However, symbiotic N2 fixation is very sensitive to environmental stresses that affect plant growth, and there is little knowledge on the impact of root pruning on N2 fixation and plant growth.


In this study, we removed half of the nodulated roots of pea wild-type Frisson and hypernodulating mutants P64, P118, and P121. Dinitrogen fixation was measured using 15N labeling and carbon assimilation and partitioning between plant organs using 13C labeling.


Root pruning decreased N2 fixation by −46 to −79 % in wild-type and mutants. Pea mutant P118 had a lower decrease of specific activity of N2 fixation (−17 %) than both wild-type and other mutants (−36 to −62 %). For all genotypes, root pruning increased root and nodule sinks strengths for carbon. For P118 and for P121, this was associated to higher nodule growth than for control plants, as measured 8 days after root pruning.


This is the first analysis of N2-fixing plant response to root pruning. Importantly, we showed that some hypernodulating mutant pea lines (P118 and to a lesser extent P121) withstood this stress better than wild-type did.


Pisum sativumHypernodulating mutants Root pruning Symbiotic N2 fixation C nutrition Growth 







Specific leaf nitrogen


Days after imbibition


Autoregulation of nodulation


Dry weight



Our grateful thanks are due to Vincent Durey, Patrick Mathey, Anne-Lise Santoni, and Sylvie Girodet for their technical assistance. We also thank Anouk Zancarini, Annabelle Larmure, Marion Prudent, Stephen Marle, and Charlotte Ollagnier for either their advice or help during the experiments. We thank the greenhouse staff for managing the experiments. We finally thank Richard Thompson and Sergio Ochatt for critical readings of this manuscript. This work was partly funded by the French National Institute of Agronomical Research (INRA), UNIP, and Burgundy Region.


  1. Aldahadha AM, Warwick NWM, Backhouse D (2012) Effects of pythium irregulare and root pruning on water-use efficiency of hydroponically grown wheat under PEG-induced drought. J Phytopathol 160(7–8):397–403. doi: 10.1111/j.1439-0434.2012.01917.x CrossRefGoogle Scholar
  2. Bargaz A, Drevon JJ, Oufdou K, Mandri B, Faghire M, Ghoulam C (2011) Nodule phosphorus requirement and O-2 uptake in common bean genotypes under phosphorus deficiency. Acta Agric Scand Sec B-Soil Plant Sci 61(7):602–611. doi: 10.1080/09064710.2010.533188 Google Scholar
  3. Bollman MI, Vessey JK (2006) Differential effects of nitrate and ammonium supply on nodule initiation, development, and distribution on roots of pea (Pisum sativum). Can J Bot 84(6):893–903. doi: 10.1139/b06-027 CrossRefGoogle Scholar
  4. Bourion V, Laguerre G, Depret G, Voisin AS, Salon C, Duc G (2007) Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Ann Bot 100(3):589–598PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cantot P (1986) Estimation of the adult and larval population of Sitona lineatus in pea crops and of attacks by them. Agronomie 6(5):481–486. doi: 10.1051/agro:19860509 CrossRefGoogle Scholar
  6. Cantot P (1989) Effects of the larvae of Sitona lineatus L. on some productivity factors in proteaginous pea (Pisum sativum L.). Agronomie 9(8):765–770. doi: 10.1051/agro:19890803 CrossRefGoogle Scholar
  7. Chapin FS, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37(1):49–57CrossRefGoogle Scholar
  8. Chaudhary MI, Adu-Gyamfi JJ, Saneoka H, Nguyen NT, Suwa R, Kanai S, El-Shemy HA, Lightfoot DA, Fujita K (2008) The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol Plant 30(4):537–544. doi: 10.1007/s11738-008-0152-8 CrossRefGoogle Scholar
  9. Corre-Hellou G, Crozat Y (2005) N2 fixation and N supply in organic pea (Pisum sativum L.) cropping systems as affected by weeds and peaweevil (Sitona lineatus L.). Eur J Agron 22(4):449–458. doi: 10.1016/j.eja.2004.05.005 CrossRefGoogle Scholar
  10. Crozat Y, Dore T (2010) Biotic stresses. In: Munier-Jolain N, Biarnes V, Chaillet I, Lecoeur J, Jeuffroy M-H (eds) Physiology of the pea crop. QUAE edn. CRC Press, pp 193–196Google Scholar
  11. Crozat Y, Fustec J (2006) Assessing the role of grain legumes in crop rotation: some agronomic concepts that can help! In: AEP (ed) Grain legumes and the environment: how to assess benefits and impacts. Proceedings of the AEP workshop. Zürich, Switzerland, pp 55–60Google Scholar
  12. Dore T, Meynard JM (1995) On-farm analysis of attacks by the pea weevil (Sitona lineatus L. Col, Curculionidae) and the resulting damage to pea (Pisum sativum L.) crops. J Appl Entomol-Z Angew Entomol 119(1):49–54CrossRefGoogle Scholar
  13. Evans JR, Seemann JR (1989) The allocation of protein-nitrogen in the photosynthetic apparatus : costs, consequences and control. In: Briggs W (ed) Toward a broad understanding of photosynthesis. ARLiss, New York, pp 183–205Google Scholar
  14. Frings JFJ (1976) The Rhizobium-Pea symbiosis as affected by high temperatures. Medelingen Landbouwhoges School, Wageningen, NetherlandGoogle Scholar
  15. Gaulin E, Jacquet C, Bottin A, Dumas B (2007) Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol 8(5):539–548. doi: 10.1111/j.1364-3703.2007.00413.x PubMedCrossRefGoogle Scholar
  16. Gerard PJ (2002) Nodule damage by clover root weevil larvae in white clover swards. In: New Zealand Plant Protection, Vol 55, vol 55. New Zealand Plant Protection-Series. New Zealand Plant Protection Soc, Rotorua, pp 246–251Google Scholar
  17. Hacin JI, Bohlool BB, Singleton PW (1997) Partitioning of C-14-labelled photosynthate to developing nodules and roots of soybean (Glycine max). New Phytol 137(2):257–265. doi: 10.1046/j.1469-8137.1997.00812.x CrossRefGoogle Scholar
  18. Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L'Anthoene V, Esnault R, Riviere JP, Klein A, Mangin P, McPhee KE, Roux-Duparque M, Porter L, Miteul H, Lesne A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123(2):261–281. doi: 10.1007/s00122-011-1582-z PubMedCrossRefGoogle Scholar
  19. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252(1):177–186. doi: 10.1023/a:1024189029226 CrossRefGoogle Scholar
  20. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32(2):329–364. doi: 10.1007/s13593-011-0056-7 CrossRefGoogle Scholar
  21. Jeudy C, Ruffel S, Freixes S, Tillard P, Santoni AL, Morel S, Journet EP, Duc G, Gojon A, Lepetit M, Salon C (2010) Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytol 185(3):817–828PubMedCrossRefGoogle Scholar
  22. Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914):422–426. doi: 10.1038/nature01207 PubMedCrossRefGoogle Scholar
  23. Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65(6):861–871. doi: 10.1111/j.1365-313X.2010.04474.x PubMedCrossRefGoogle Scholar
  24. Layzell DB, Pate JS, Atkins CA, Canvin DT (1981) Partitioning of carbon and nitrogen and the nutrition of root and shoot apex in a nodulated legume. Plant Physiol 67(1):30–36. doi: 10.1104/pp. 67.1.30 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lohaus K, Vidal S (2010) Abundance of Sitona lineatus L. (Col., Curculionidae) in peas (Pisum sativum L.): effects on yield parameters and nitrogen balance. Crop Prot 29(3):283–289. doi: 10.1016/j.cropro.2009.09.009 CrossRefGoogle Scholar
  26. Lucinski R, Polcyn W, Ratajczak L (2002) Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium - legumes. Acta Biochim Pol 49(2):537–546PubMedGoogle Scholar
  27. Mahieu S, Germon F, Aveline A, Hauggaard-Nielsen H, Ambus P, Jensen ES (2009) The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biol Biochem 41(2):380–387. doi: 10.1016/j.soilbio.2008.11.021 CrossRefGoogle Scholar
  28. Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, Gonzalez EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143(4):1968–1974. doi: 10.1104/pp. 107.097139 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mathesius U (2009) Comparative proteomic studies of root-microbe interactions. J Proteomics 72(3):353–366. doi: 10.1016/j.jprot.2008.12.006 PubMedCrossRefGoogle Scholar
  30. Miao SJ, Qiao YF, Han XZ, An M (2007) Nodule formation and development in soybeans (Glycine max L.) in response to phosphorus supply in solution culture. Pedosphere 17(1):36–43. doi: 10.1016/s1002-0160(07)60005-8 CrossRefGoogle Scholar
  31. Mortier V, Holsters M, Goormachtig S (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ 35(2):245–258. doi: 10.1111/j.1365-3040.2011.02406.x PubMedCrossRefGoogle Scholar
  32. Moussart A, Onfroy C, Lesne A, Esquibet M, Grenier E, Tivoli B (2007) Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). Eur J Plant Pathol 117(1):57–69. doi: 10.1007/s10658-006-9071-y CrossRefGoogle Scholar
  33. Munier-Jolain N, Carrouee B (2003) Considering pea in sustainable agriculture: agricultural and environmental arguments. Quelle place pour le pois dans une agriculture respectueuse de l'environnement? Argumentaire agri-environnemental. Cahiers Agric 12(2):111–120Google Scholar
  34. Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect root herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens) seedlings. Can J Bot-Rev Can Bot 74(10):1591–1595CrossRefGoogle Scholar
  35. Naeem F, Malik KA, Hafeez FY (2008) Pisum sativum - Rhizobium interactions under different environmental stresses. Pak J Bot 40(6):2601–2612Google Scholar
  36. Nap JP, Bisseling T (1990) Developmental biology of a plant-prokaryote symbiosis—the legume root nodule. Science 250(4983):948–954. doi: 10.1126/science.250.4983.948 PubMedCrossRefGoogle Scholar
  37. Nemecek T, von Richthofen JS, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28(3):380–393. doi: 10.1016/j.eja.2007.11.004 CrossRefGoogle Scholar
  38. Novák K (2010) On the efficiency of legume supernodulating mutants. Ann Appl Biol 157(3):321–342. doi: 10.1111/j.1744-7348.2010.00431.x CrossRefGoogle Scholar
  39. Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9(5):496–502PubMedCrossRefGoogle Scholar
  40. Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106(1):28–39. doi: 10.1007/s00122-002-0985-2 PubMedGoogle Scholar
  41. Postma JG, Jacobsen E, Feenstra WJ (1988) Three pea mutants with an altered nodulation studied by genetic-analysis and grafting. J Plant Physiol 132(4):424–430CrossRefGoogle Scholar
  42. Qiao YF, Tang CX, Han XZ, Miao SF (2007) Phosphorus deficiency delays the onset of nodule function in soybean. J Plant Nutr 30(7–9):1341–1353. doi: 10.1080/01904160701555325 CrossRefGoogle Scholar
  43. Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108(5):789–795. doi: 10.1093/aob/mcr205 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146(4):2020–2035PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sagan M, Duc G (1996) Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L). Symbiosis 20(3):229–245Google Scholar
  46. Sagan M, Ney B, Duc G (1993) Plant symbiotic mutants as a tool to analyze nitrogen nutrition and yield relationship in field-grown peas (Pisum sativum L.). Plant Soil 153(1):33–45. doi: 10.1007/bf00010542 CrossRefGoogle Scholar
  47. Santalla M, Amurrio JM, de Ron AM (2001) Symbiotic interactions between Rhizobium leguminosarum strains and elite cultivars of Pisum sativum L. J Agron Crop Sci-Z Acker Pflanzenbau 187(1):59–68. doi: 10.1046/j.1439-037X.2001.00502.x Google Scholar
  48. Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA (2011) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157(1):328–340. doi: 10.1104/pp. 111.178756 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Schuller KA, Minchin FR, Gresshoff PM (1988) Nitrogenase activity and oxygen diffusion in nodules of Soybean cv. Bragg and a supernodulating mutant—effects of nitrate. J Exp Bot 39(204):865–877. doi: 10.1093/jxb/39.7.865 CrossRefGoogle Scholar
  50. Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98(4):731–740. doi: 10.1093/aob/mcl154 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Vance CP, Heichel GH (1991) Carbon in N2 fixation—limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392. doi: 10.1146/annurev.arplant.42.1.373 CrossRefGoogle Scholar
  52. Voisin AS, Salon C, Munier-Jolain NG, Ney B (2002) Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant Soil 242(2):251–262CrossRefGoogle Scholar
  53. Voisin AS, Salon C, Jeudy C, Warembourg FR (2003a) Seasonal patterns of C-13 partitioning between shoots and nodulated roots of N2- or nitrate-fed Pisum sativum L. Ann Bot 91(5):539–546PubMedCrossRefGoogle Scholar
  54. Voisin AS, Salon C, Jeudy C, Warembourg FR (2003b) Root and nodule growth in Pisum sativum L. in relation to photosynthesis: analysis using C-13-labelling. Ann Bot 92(4):557–563PubMedCrossRefGoogle Scholar
  55. Voisin AS, Salon C, Jeudy C, Warembourg FR (2003c) Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology. J Exp Bot 54(393):2733–2744PubMedCrossRefGoogle Scholar
  56. Voisin AS, Bourion V, Duc G, Salon C (2007) Using an ecophysiological analysis to dissect genetic variability and to propose an ideotype for nitrogen nutrition in pea. Ann Bot 100(7):1525–1536PubMedCentralPubMedCrossRefGoogle Scholar
  57. Voisin AS, Munier-Jolain NG, Salon C (2010) The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant and Soil 337(1–2):399–412. doi: 10.1007/s11104-010-0536-6 CrossRefGoogle Scholar
  58. Voisin A-S, Cazenave A-B, Duc G, Salon C (2013) Pea nodule gradients explain C nutrition and depressed growth phenotype of hypernodulating mutants. Agron Sustain Dev. doi: 10.1007/s13593-013-0146-9 Google Scholar
  59. Walsh KB, Vessey JK, Layzell DB (1987) Carbohydrate supply and N2 fixation in soybean—the effect of varied daylength and stem girdling. Plant Physiol 85(1):137–144. doi: 10.1104/pp. 85.1.137 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wopereis J, Pajuelo E, Dazzo FB, Jiang QY, Gresshoff PM, de Bruijn FJ, Stougaard J, Szczyglowski K (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23(1):97–114. doi: 10.1046/j.1365-313x.2000.00799.x PubMedCrossRefGoogle Scholar
  61. Yang SJ, Du ZY, Yu Y, Che YY, Yuan CH, Xing SJ (2012) Effect of root pruning on competitive ability in Chinese jujube tree. Fruits 67(6):429–437. doi: 10.1051/fruits/2012038 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandre-Brice Cazenave
    • 1
  • Christophe Salon
    • 1
  • Christian Jeudy
    • 1
  • Gérard Duc
    • 1
  • Anne-Sophie Voisin
    • 1
  1. 1.INRA, UMR 1347 AgroécologieDijonFrance

Personalised recommendations