Plant and Soil

, Volume 378, Issue 1–2, pp 215–226 | Cite as

Effects on nutrient cycling of conifer restoration in a degraded tropical montane forest

  • J. A. Ramírez
  • J. D. León-Peláez
  • D. Craven
  • D. A. Herrera
  • C. M. Zapata
  • M. I. González-Hernández
  • J. Gallardo-Lancho
  • W. Osorio
Regular Article


Background and aims

Exotic coniferous species have been used widely in restoration efforts in tropical montane forests due to their tolerance to adverse conditions and rapid growth, with little consideration given to the potential ecological benefits provided by native tree species. The aim of this study was to elucidate differences in litterfall and nutrient flow between a montane oak forest (Quercus humboldtii Bonpl.) and exotic coniferous plantations of pine (Pinus patula Schltdl. & Cham.) and cypress (Cupressus lusitanica Mill.) in the Colombian Andes.


Litter production, litter decomposition rate, and element composition of leaf litter were monitored during 3 years.


Litter production in the oak forest and pine plantation was similar, but considerably lower in the cypress plantation . Similar patterns were observed for nutrient concentrations in litterfall, with the exception of Ca which was three times higher in the cypress plantation. The annual decay rate of litter was faster in the montane oak forest than in either of the exotic coniferous plantations. The potential and net return of nutrients to the forest floor were significantly higher in oak forest than in the exotic coniferous plantations.


Future restoration programs should consider new species that can emulate the nutrient flow of native broadleaf species instead of exotic species that tend to impoverish soil nutrient stocks in tropical montane forests.


Leaf litterfall Nutrient flows Montane tropical forests Plantations Quercus humboldtii Pinus patula Cupressus lusitanica 



We thank the Ecology and Environmental Conservation Laboratory and the Piedras Blancas Forest Station of the Forest Sciences Department, Universidad Nacional de Colombia, for their financial and technical support. Research was also funded by the research division of the Universidad Nacional de Colombia. We also thank the laboratory of soils from the Universidad de Salamanca, Spain, for its technical support. We are grateful to Empresas Públicas de Medellín for allowing us access to the forests. Finally, we thank Drs. Osvaldo Valeria and W.F.J. Parsons for their comments and help with statistical analysis and language revision of this manuscript.


  1. Acosta-Contreras I (2004) Estudio de tendencias y perspectivas del sector forestal en América Latina. Informe Nacional Colombia. CONIF and FAO, RomaGoogle Scholar
  2. Aldana C (2004) Sector forestal Colombiano. Fuente de vida, trabajo y bienestar. CONIF, BogotaGoogle Scholar
  3. Armenteras D, Rodriguez N, Retana J, Morales M (2011) Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg Environ Chang 11:693–705CrossRefGoogle Scholar
  4. Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483CrossRefGoogle Scholar
  5. Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach A-M, Hérault B, Patiño S, Roggy J-C, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347PubMedCrossRefGoogle Scholar
  6. Benner L, Vitousek PM, Ostertag R (2011) Nutrient cycling and nutrient limitation in tropical montane cloud forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management (International hydrology series). Cambridge University Press, CambridgeGoogle Scholar
  7. Blandon L (2008) Physical accounts of the forest in the basin of Piedras Blancas, Medellin (Colombia). For Syst 10:167–184Google Scholar
  8. Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9:179–185CrossRefGoogle Scholar
  9. Boley JD, Drew AP, Andrus RE (2009) Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. For Ecol Manag 257:2254–2261CrossRefGoogle Scholar
  10. Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole JC, Holl KD (2011) Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica 43:279–287CrossRefGoogle Scholar
  11. Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55CrossRefGoogle Scholar
  12. Cole RJ, Holl KD, Zahawi RA (2010) Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol Appl 20:1255–1269PubMedCrossRefGoogle Scholar
  13. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van-Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071PubMedCrossRefGoogle Scholar
  14. Cuevas E, Lugo A (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For Ecol Manag 112:263–279CrossRefGoogle Scholar
  15. Currie WS, Harmon ME, Burke IC, Hart SC, Parton WJ, Silver W (2009) Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob Chang Biol 16:1744–1761CrossRefGoogle Scholar
  16. DANE (2004) Síntesis censo de plantaciones forestales del Departamento de Antioquia. DANE, BogotaGoogle Scholar
  17. Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001PubMedCrossRefGoogle Scholar
  18. Edwards PJ (1982) Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. J Ecol 70:807–827CrossRefGoogle Scholar
  19. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefGoogle Scholar
  20. Etter A, McAlpine C, Wilson K, Phinn S, Possingham H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386CrossRefGoogle Scholar
  21. Evans J, Turnbull J (2004) Plantation forestry in the tropics. Oxford University Press, New YorkGoogle Scholar
  22. Fassbender HW, Grimm V (1981) Ciclos biogeoquímicos en un ecosistema forestal de los Andes Occidentales de Venezuela. II. Producción y descomposición de los residuos vegetales. Turrialba 31:39–47Google Scholar
  23. Fisher RF (1995) Amelioration of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59:544–549CrossRefGoogle Scholar
  24. Fisher J, Malhi Y, Torres I, Metcalfe D, Weg M, Meir P, Silva-Espejo J, Huasco W (2012) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902. doi: 10.1007/s00442-012-2522-6 PubMedCrossRefGoogle Scholar
  25. Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630CrossRefGoogle Scholar
  26. Galindo R, Betancur J, Cadena J (2003) Estructura y composición florística de cuatro bosques andinos del santuario de flora y fauna Guanentá-Alto río Fonce, Cordillera Oriental Colombiana. Caldasia 25:313–335Google Scholar
  27. Gradstein SR, Homeier J, Gansert D (2008) The tropical mountain forest—patterns and processes in a biodiversity hotspot. Göttingen Centre for Biodiversity and Ecology, GöttingenGoogle Scholar
  28. Haase R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Manag 117:129–147CrossRefGoogle Scholar
  29. Herbohn JL, Congdon RA (1998) Ecosystem dynamics at disturbed and undisturbed sites in north Queensland wet tropical rain forest. II. Nutrient returns to the forest floor through litter fall. J Trop Ecol 14:217–229CrossRefGoogle Scholar
  30. ITTO (2009) Encouraging industrial forest plantations in the tropics: report of a global study. ITTO Technical Series No. 33, Yokohama, JapanGoogle Scholar
  31. Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432CrossRefGoogle Scholar
  32. Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, Chichester, 190 ppGoogle Scholar
  33. León JD, Vélez G, Yepes AP (2009) Estructura y composición florística de tres robledales en la región norte de la cordillera central de Colombia. Rev Biol Trop 57:1165–1182PubMedGoogle Scholar
  34. Lisanework N, Michelsen A (1994) Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland. For Ecol Manag 65:149–164CrossRefGoogle Scholar
  35. Loaiza-Usuga JC, León-Peláez JD, Ramirez JA, González-Hernández MI, Gallardo-Lancho JF, Osorio-Vega W, Correa-Londoño G (2013) Alterations in litter decomposition patterns in tropical montane forests of Colombia: a comparison of oak forests and coniferous plantations. Can J For Res 43:528–533CrossRefGoogle Scholar
  36. Lundgren B (1978) Soil conditions and nutrient cycling under natural and plantation forests in Tanzanian Highlands. Reports in Forest Ecology and Forest Soils 31. Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  37. Makkonen M, Berg MP, Handa T, Hättenschwiler S, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041PubMedCrossRefGoogle Scholar
  38. McDonald M, Healey J (2000) Nutrient cycling in secondary forest in the Blue Mountains of Jamaica. For Ecol Manag 139:257–278CrossRefGoogle Scholar
  39. Medina E, Cuevas E (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Río Negro basin. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications, OxfordGoogle Scholar
  40. Medina E, Cuevas E, Weaver PL (1981) Composición foliar y transpiración de especies leñosas del Pico del Este, Sierra de Luquillo, Puerto Rico. Acta Cient Venez 32:159–165Google Scholar
  41. Montagnini F (2005) Selecting tree species for plantation. In: Mansourian S, Vallauri D, Dudley N (eds) Forest restoration in landscapes: beyond planting trees. Springer, New YorkGoogle Scholar
  42. Motta-Tello MT, Candelo-Cardenas R (2003) El complejo forestal Colombiano. In: Bercovich N, Kats J (eds) El desarrollo de complejos forestales en América Latina. CEPAL and ALFAOMEGA COLOMBIANA S.A., BogotaGoogle Scholar
  43. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  44. Nanzyo M, Dahlgren R, Shoji S (1993) Chemical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren R (eds) Volcanic ash soils. Elsevier, The NetherlandsGoogle Scholar
  45. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331CrossRefGoogle Scholar
  46. Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515CrossRefGoogle Scholar
  47. Pandey RR, Sharma G, Tripathi SK, Singh AK (2007) Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. For Ecol Manag 240:96–104CrossRefGoogle Scholar
  48. Priess J, Then C, Folster H (1999) Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecol 143:171–187CrossRefGoogle Scholar
  49. Proctor J (1983) Tropical forest litterfall. I. Problems of litter comparison. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell, OxfordGoogle Scholar
  50. Proctor J, Phillips C, Duff GK, Heaney A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. Some forest processes. J Ecol 77:317–331CrossRefGoogle Scholar
  51. Reich PB, Wright IJ, Lusk CH (2007) Predicting leaf functional traits from simple plant and climate attributers using the GLOPNET global data set. Ecol Appl 17:1982–1988PubMedCrossRefGoogle Scholar
  52. Stadtmuller T (1987) Cloud forests in the humid tropics: a bibliographic review. Centro Agronomico Tropical de Investigacion y Ensenanza, TurrialbaGoogle Scholar
  53. Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected tree species in a tropical forest at Kodayar in the western Ghats, India. For Ecol Manag 123:231–244CrossRefGoogle Scholar
  54. Tanner PM, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22CrossRefGoogle Scholar
  55. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104CrossRefGoogle Scholar
  56. Tschinkel H (1972) Factores limitantes del crecimiento de plantaciones de Cupressus lusitanica en Antioquia, Colombia. Rev Fac Nac Agron 27:3–55Google Scholar
  57. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  58. Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–336CrossRefGoogle Scholar
  59. Vera M, Cavelier J, Santamaría J (1999) Reabsorción de nitrógeno y fósforo foliar en árboles de bosques montanos en los Andes Centrales de Colombia. Rev Biol Trop 47:33–43Google Scholar
  60. Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar
  61. Vitousek PM, Gerrish G, Turner DR, Walker LR, Müeller-Dombois D (1995) Litterfall and nutrient cycling in four Hawaiian montane rainforests. J Trop Ecol 11:189–203CrossRefGoogle Scholar
  62. Wang Q, Wang S, Huang Y (2008) Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manag 255:1210–1218CrossRefGoogle Scholar
  63. Xu XN, Hirata E (2002) Forest floor mass and litterfall in Pinus luchuensis plantations with and without broad-leaved trees. For Ecol Manag 157:165–173CrossRefGoogle Scholar
  64. Yang YS, Guo JF, Chen GS, Xie JS, Cai LP, Lin P (2004) Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Ann For Sci 61:465–476CrossRefGoogle Scholar
  65. Yang YS, Guo JF, Chen GS, Xie JS, Gao R, Li Z, Jin Z (2005) Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry 78:403–415CrossRefGoogle Scholar
  66. Young BE, Young KR, Josse C (2011) Vulnerability of tropical Andean ecosystems to climate change. In: Sebastian RM, Herzog K, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE)Google Scholar
  67. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93CrossRefGoogle Scholar
  68. Zou X, Zucca CP, Waide RB, McDowell WH (1995) Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico. For Ecol Manag 78:147–157CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. A. Ramírez
    • 1
  • J. D. León-Peláez
    • 2
  • D. Craven
    • 3
  • D. A. Herrera
    • 2
  • C. M. Zapata
    • 2
  • M. I. González-Hernández
    • 4
  • J. Gallardo-Lancho
    • 5
  • W. Osorio
    • 6
  1. 1.Center for Forest ResearchUniversité du Québec à MontréalQuébecCanada
  2. 2.Departamento de Ciencias ForestalesUniversidad Nacional de ColombiaMedellínColombia
  3. 3.German Centre for Integrative Biodiversity Research (iDiv) and Synthesis Centre for Biodiversity Sciences (sDiv)LeipzigGermany
  4. 4.Departamento de Biología Animal, Parasitología, Ecología, Edafología y Química AgrícolaUniversidad de SalamancaSalamancaSpain
  5. 5.Consejo Superior de Investigaciones Científicas, IRNASaSalamancaSpain
  6. 6.Departamento de BiocienciasUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations