Plant and Soil

, Volume 378, Issue 1–2, pp 113–123 | Cite as

Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil

  • Tânia L. Costa
  • Everardo V. S. B. Sampaio
  • Margareth F. Sales
  • Luciano J. O. Accioly
  • Tiago D. Althoff
  • Frans G. C. Pareyn
  • Eliza R. G. M. Albuquerque
  • Rômulo S. C. Menezes
Regular Article



Root and shoot biomasses and their ratio (R:S) were determined for three stages of forest regeneration (18, 40 and > 60 years.), and for open and dense vegetation, in four soil classes in the semi-arid region of Northeast Brazil.


Shoot biomasses were estimated by allometry and roots were collected in 0.7 × 0.7 × 1 m trenches.


Root and shoot biomasses and the R:S ratio were over double in the >60 year-old vegetation (R:S = 0.67) when compared to more recent regenerated areas (0.32). In dense vegetation the biomass of roots and shoots were also more than the double of those in open vegetation but the R:S ratios were not significantly different (0.51 and 0.49). Litholic Neosols had lower ratio (0.22) than the other soil classes (0.53 to 0.63) and dense and open vegetation did not differ. In all areas except in deep sandy Quartzarenic Neosols most of the roots (> 90 %) were in the upper 40-cm layer of the soil profile, and consisted of coarse roots.


Root biomass accumulates more slowly than aboveground biomass and it takes several decades to stabilize in shallower soils. The R:S ratios are higher when compared to other dry land forests, probably due to low water availability.


caatinga Root-shoot ratio Successional stages 



The authors are grateful to Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) for the master scholarship of the first author and research fellowship of the second and eighth authors. They are also grateful to CNPq and to Fundação de Ciência e Tecnologia de Pernambuco (FACEPE) for the financial and logistical support, mainly through the Project “Impactos de Mudanças Climáticas Sobre a Cobertura e Uso da Terra em Pernambuco: Geração e Disponibilização de Informações para o Subsídio a Políticas Públicas (Processo APQ-0077-5.01/09, edital 05-2010)”. The authors are also grateful to Dr. Vanderlise Giongo, of EMBRAPA Semiárido for the access to part of her unpublished data.


  1. Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28:179–197CrossRefGoogle Scholar
  2. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. Rome: FAO, Forestry Paper 134. Accessed 06 March 2012
  3. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11CrossRefGoogle Scholar
  4. Castellanos J, Maass M, Kummerow J (1991) Root biomass of a dry deciduous tropical forest in Mexico. Plant Soil 131:225–228CrossRefGoogle Scholar
  5. Castilho CV, Magnusson WE, Araujo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234:85–96CrossRefGoogle Scholar
  6. Cavelier J (1992) Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201CrossRefGoogle Scholar
  7. Chang R, Fu B, Liu G, Yao X, Wang S (2012) Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China. Ecol Res 27:827–836CrossRefGoogle Scholar
  8. Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207CrossRefGoogle Scholar
  9. Empresa Brasileira de Pesquisa Agropecuária, (EMBRAPA) (2001) Zoneamento Agroecológico do Estado de Pernambuco. ZAPE Digital, Recife/PE: Embrapa solos/35Google Scholar
  10. Fonseca W, Benayas JMR, Alice FE (2011) Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For Ecol Manag 262:1400–1408CrossRefGoogle Scholar
  11. Hertel D, Moser G, Culmsee H, Erasmi S, Horna V, Schuldt B, Leuschner CH (2009) Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. For Ecol Manag 258:1904–1912CrossRefGoogle Scholar
  12. Higuchi N, Santos J, Ribeiro RJ, Minette L, Biot Y (1998) Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia brasileira. Acta Amazon 28:153–166Google Scholar
  13. Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res. doi: 10.1029/2009JG000935 Google Scholar
  14. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411CrossRefGoogle Scholar
  15. Jacomine PT, Cavalcanti AC, Burgos N, Pessoa SCP, Silveira CO (1973) Levantamento exploratório-reconhecimento de solos do Estado de Pernambuco. Ministério da Agricultura/SUDENE, RecifeGoogle Scholar
  16. Jaramillo VJ, Ahedo-Hernández R, Kauffman JB (2003a) Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. J Trop Ecol 19:457–464CrossRefGoogle Scholar
  17. Jaramillo VJ, Kauffman JB, Rentería-Rodriíguez L, Cummings DL, Ellingson LJ (2003b) Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6:609–629CrossRefGoogle Scholar
  18. Jaramillo VJ, Martínez-Yrízar A, Sanford-Jr RL (2011) Primary productivity and biogeochemistry of seasonally dry tropical forests. In: Dirzo R, Young HS, Mooney HA, Ceballos G (eds) Seasonally dry tropical forests: ecology and conservation, Island Press, Washington, pp 109–128Google Scholar
  19. Jensen JR (2009) Elementos de interpretação visual de imagens. In: Jensen JR (ed) Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres, Parêntese, pp 129–150Google Scholar
  20. John B, Pandey HN, Tripathi RS (2001) Vertical distribution and seasonal changes of fine and coarse root mass in Pinus kesiya Royle ex. Gordon forest of three different ages. Acta Oecol 22:293–300CrossRefGoogle Scholar
  21. Kenzo T, Ichie T, Hattoric D, Kendawangd JJ, Sakuraib K, Ninomiyae I (2010) Changes in above and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. For Ecol Manag 260:875–882CrossRefGoogle Scholar
  22. Laurence WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape-scale study. For Ecol Manag 118:127–138CrossRefGoogle Scholar
  23. Martínez-Yrízar A (1995) Biomass distribution and primary productivity of tropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests, Cambridge University, Cambridge, pp 326–345Google Scholar
  24. Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505CrossRefGoogle Scholar
  25. Millikin CS, Bledsoe CS (1999) Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214:27–38CrossRefGoogle Scholar
  26. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96CrossRefGoogle Scholar
  27. Murphy MT, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88CrossRefGoogle Scholar
  28. Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434CrossRefGoogle Scholar
  29. Pande PK (2005) Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop Ecol 46:229–239Google Scholar
  30. Peichl M, Arain MA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63CrossRefGoogle Scholar
  31. Peichl M, Arain MA (2007) Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253:68–80CrossRefGoogle Scholar
  32. Pereira IM, Andrade LA, Sampaio EVSB, Barbosa MRV (2003) Use-history effects on structure and flora of Caatinga. Biotropica 35:154–165Google Scholar
  33. Pinheiro EAR, Costa CAG, Araújo JC (2013) Effective root depth of the Caatinga biome. J Arid Environ 89:1–4CrossRefGoogle Scholar
  34. Raherison SM, Grouzis DM (2005) Plant biomass, nutrient concentration and nutrient storage in a tropical dry forest in the south-west of Madagascar. Plant Ecol 180:33–45CrossRefGoogle Scholar
  35. Read L, Lawrence D (2003) Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatan. Ecol Appl 13:85–97CrossRefGoogle Scholar
  36. Riegelhaupt EM, Pareyn FGC, Gariglio MA (2010) O manejo florestal como ferramenta para o uso sustentável e conservação da caatinga. In: Gariglio MA, Sampaio EVSB, Cestaro LA, Kageyama PY (eds) Uso sustentável e conservação dos recursos florestais da caatinga. Serviço florestal brasileiro, Brasília, pp 349–367Google Scholar
  37. Salcedo IH, Leite L, Vasconcelos E, Souza F, Sampaio EVSB (1999) Produção de raízes finas sob vegetação de caatinga. Workshop sobre sistema radicular: metodologias e estudos de casos. EMBRAPA 1:139–152Google Scholar
  38. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Stephen HB, Mooney HA, Medina E (eds) Seasonally dry tropical forests, Cambridge University, pp 35–63Google Scholar
  39. Sampaio EVSB, Silva GC (2005) Biomass equations for Brazilian semiarid Caatinga plants. Acta Bot Bras 19:935–943CrossRefGoogle Scholar
  40. Sampaio EVSB, Salcedo IH, Kauffman JB (1993) Effect of different fire severities on coppicing of caatinga vegetation in Serra Talhada, PE, Brazil. Biotropica 25:452–460CrossRefGoogle Scholar
  41. Sarmiento G, Pinillos M, Garay I (2005) Biomass variability in tropical American lowland rainforests. Ecotropicos 18:1–20Google Scholar
  42. Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 543–556CrossRefGoogle Scholar
  43. Silver WL, Neff J, Keller M, Mcgroddy M, Veldkamp E, Cosme R (2000) Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193–209CrossRefGoogle Scholar
  44. Souza LQ, Freitas ADS, Sampaio EVSB, Moura PM, Menezes RSC (2012) How much nitrogen is fixed by biological symbiosis in tropical dry forest? 1. Trees and shrubs. Nutr Cycl Agroecosyst 94:171–179CrossRefGoogle Scholar
  45. Tiessen H, Salcedo IH, Sampaio EVSB (1992) Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid northeastern Brazil. Agric Ecosyst Environ 38:139–151CrossRefGoogle Scholar
  46. Valverde-Barrantes OJ, Raich JW, Russell AE (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370CrossRefGoogle Scholar
  47. Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238Google Scholar
  48. Vargas R, Allen MF, Allen EB (2008) Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Glob Chang Biol 14:109–124Google Scholar
  49. Wang X, Fang J, Zhu B (2008) Forest biomass and root–shoot allocation in northeast China. For Ecol Manag 255:4007–4020CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tânia L. Costa
    • 1
  • Everardo V. S. B. Sampaio
    • 2
  • Margareth F. Sales
    • 3
  • Luciano J. O. Accioly
    • 4
  • Tiago D. Althoff
    • 2
  • Frans G. C. Pareyn
    • 5
  • Eliza R. G. M. Albuquerque
    • 1
  • Rômulo S. C. Menezes
    • 2
  1. 1.Programa de Pós-Graduação em Botânica/Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de Energia NuclearUniversidade Federal de Pernambuco.RecifeBrazil
  3. 3.Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  4. 4.Empresa Brasileira de Pesquisa Agropecuária, RecifeRecifeBrazil
  5. 5.Associação Plantas do NordesteRecifeBrazil

Personalised recommendations