Plant and Soil

, Volume 376, Issue 1–2, pp 211–228 | Cite as

Effect of organic amendment on soil fertility and plant nutrients in a post-fire Mediterranean ecosystem

  • Antoine Cellier
  • Thierry Gauquelin
  • Virginie Baldy
  • Christine Ballini
Regular Article


Backgrounds and aims

In Mediterranean frequently burnt areas, the decrease of soil fertility leads to regressive vegetation dynamics. Organic amendments could help to accelerate post-fire ecosystem resilience, by improving soil properties and plant nutrition. This study was conducted to assess the potential of a composted biosolid to restore an early post-fire shrubland.


About 50 Mg.ha−1 of fresh co-composted sewage sludge and green wastes were surface applied 7 months after fire on a silty-clayey soil. We monitored over a 2-year period organic matter and nutrient transfers to soil, nutrient responses of dominant plant species, and ecosystem contamination by potentially toxic trace elements.


Over the experimental survey, compost rapidly and durably improved soil P2O5, MgO and K2O content, and temporarily increased N-(NO3 + NO2 ) content. Plant nutrition was improved more or less durably depending species. The most positive compost effect was on plant and soil phosphorus content. Plant nutrient storage was not improved 2 years after amendment, suggesting luxury consumption. No contamination by trace elements was detected in soil and plant.


The use of compost after fire could help for rapidly restoring soil fertility and improving plant nutrition. The increase of soil nutrient pools after amendment emphazised the diversity of plant nutritional traits. Eutrophication risk could occur from high compost and soil P2O5 content.


Burnt ecosystem Phosphorus Plant nutrition Sewage sludge compost 



Principal components analysis


Cationic exchange capacity



This research was support by the Région Provence-Alpes-Côte d’Azur (France) and Biotechna. The compost was provided by Biotechna (Ensuès, Bouches-du-Rhône, southeastern France). A Bousquet-Melou, S Dupouyet, S Greff, C Lecareux, N Montès are gratefully acknowledged for field and laboratory assistance. We also thank F Torre for his help in statistical treatments. We thank M Guiresse for reviewing the manuscript.


  1. Agassi M, Kirsten WFA, Loock AH, Fine P (1998) Percolation and leachate composition in a disturbed soil layer mulched with sewage biosolids. Soil Tillage Res 45:359–372CrossRefGoogle Scholar
  2. Aggelides SM, Londra PA (2000) Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour Technol 71:253–259CrossRefGoogle Scholar
  3. AIRMARAIX (1999) Campagne de mesures temporaires de la camionnette laboratoire: Aix-les-Milles, France, 20.05.1999–08.07.1999Google Scholar
  4. Albaladejo J, Lopez J, Boix-Fayos C, Barbera GG, Martinez-Mena M (2008) Long-term effect of a single application of organic refuse on carbon sequestration and soil physical properties. J Environ Qual 37:2093–2099PubMedCrossRefGoogle Scholar
  5. Alleoni LRF, Brinton SR, O’Connor GA (2008) Runoff and leachate losses of phosphorus in a sandy spodosol amended with biosolids. J Environ Qual 37:259–265PubMedCrossRefGoogle Scholar
  6. Almendro-Candel MB, Jordán MM, Navarro-Pedreño J, Mataix-Soleira J, Gómez-Lucas I (2007) Environmental evaluation of sewage sludge application to reclaim limestone quarries wastes as soil amendments. Soil Biol Biochem 39:1328–1332CrossRefGoogle Scholar
  7. Annabi M, Houot S, Francou C, Poitrenaud M, Le Bissonnais Y (2007) Soil aggregate stability improvement with urban composts of different maturities. Soil Sci Soc Am J 71:413–423CrossRefGoogle Scholar
  8. Archibold OW (1995) Mediterranean ecosystems. In: Chapman and Hall (eds) Ecology of world vegetation. London, pp 131–164Google Scholar
  9. Ashworth DJ, Alloway BJ (2004) Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ Pollut 127:137–144PubMedCrossRefGoogle Scholar
  10. Bagnouls F, Gaussen H (1957) Les climats biologiques et leur classification. Ann Géogr 355:193–220CrossRefGoogle Scholar
  11. Barbero M (1990) Méditerranée: bioclimatologie, sclérophyllie, sylvigenèse. Ecol Mediterr XVI:1–12Google Scholar
  12. Barker AV (1997) Composition and uses of compost. In: Recheigl JE, MacKinnon HC (eds) Agricultural uses of by-products and wastes. American Chemical Society, Washington, pp 140–162CrossRefGoogle Scholar
  13. Berendse F (1998) Effects of the dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88CrossRefGoogle Scholar
  14. Bernal MP, Navarro AF, Sánchez-Monedero MA, Roig A, Cegarra J (1998) Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biol Biochem 30:305–313CrossRefGoogle Scholar
  15. Bodet JM, Carioli M (2001) Modalités pratiques d’emploi des composts élaborés à partir de produits d’origine non agricole. Les nouveaux défis de la fertilisation raisonnée. GEMAS, Comifer, 183–193Google Scholar
  16. Boerner REJ (1982) Fire and nutrient cycling in temperate ecosystems. Bioscience 32(3):187–192CrossRefGoogle Scholar
  17. Brenton CM, Fish EB, Mata-González R (2007) Macronutrient and trace element leaching following biosolids application on semi-arid rangeland soils. Arid Land Res Manag 21:143–156CrossRefGoogle Scholar
  18. Cambardella CA, Richard TL, Russell A (2003) Compost mineralisation in soil as a function of composting process conditions. Eur J Soil Biol 39:117–127CrossRefGoogle Scholar
  19. Caravaca F, Figueroa D, Alguacil MM, Roldán A (2003) Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresour Technol 90:65–70PubMedCrossRefGoogle Scholar
  20. Celik I, Ortas I, Kilic S (2004) Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Tillage Res 78:59–67CrossRefGoogle Scholar
  21. Celik I, Gunal H, Budak M, Akpinar C (2010) Effects of long-term organic and mineral fertilizer on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 160:236–243CrossRefGoogle Scholar
  22. Cellier A (2012) Amendements de composts dans un écosystème méditerranéen après incendie: effets sur le sol, les micro-organismes et la végétation. PhD thesis, Aix-Marseille Université, FranceGoogle Scholar
  23. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  24. Chenu C (2002) Conséquences agronomiques et environnementales du stockage de carbone dans les sols agricoles. In Stocker du carbone dans les sols agricoles de France? Institut National de la Recherche Agronomique (ed), France, pp 60–62Google Scholar
  25. Curtis MJ, Claassen VP (2009) Regenerating topsoil functionality in four drastically disturbed soil types by compost incorporation. Restor Ecol 17:24–32CrossRefGoogle Scholar
  26. De Luis M, Garcia-Cano MF, Cortina J, Raventos J, Gonzalez-Hidalgo JC, Sanchez JR (2001) Climatic trends, disturbance and short-term vegetation dynamics in Mediterranean shrubland. For Ecol Manag 147:25–37CrossRefGoogle Scholar
  27. DeBano LF, Conrad CE (1978) The effect of fire on nutrients in a chaparral ecosystem. Ecology 59(3):489–497CrossRefGoogle Scholar
  28. Delitti W, Ferran A, Trabaud L, Vallejo R (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. Plant composition and productivity. Plant Ecol 177:57–70CrossRefGoogle Scholar
  29. Dumas JBA (1831) Procédés de l’analyse organique. Ann Chim Phys 247:198–213Google Scholar
  30. Dumontet S, Dinel H, Scopa A, Mazzatura A, Saracino A (1996) Post-fire soil microbial biomass and nutrient content of a pine forest from a dunal Mediterranean environment. Soil Biol Biochem 28:1467–1475CrossRefGoogle Scholar
  31. Duong TTT, Penfold C, Marschner P (2012) Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354:197–209CrossRefGoogle Scholar
  32. Eugenio M, Lloret F, Alcañiz JM (2006a) Regional patterns of fire recurrence effects on calcareous soils of Mediterranean Pinus halepensis communities. For Ecol Manag 221:313–318CrossRefGoogle Scholar
  33. Eugenio M, Verkaik I, Lloret F, Espelta JM (2006b) Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula). For Ecol Manag 231:47–54CrossRefGoogle Scholar
  34. Fernández JM, Hernandez D, Plaza C, Polo A (2007) Organic matter in degraded agricultural soils amended with composted and thermally-dried sewage-sludges. Sci Total Environ 378:75–80PubMedCrossRefGoogle Scholar
  35. Ferran A, Delitti W, Vallejo VR (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): II. Plant and soil nutrients. Plant Ecol 177:71–83CrossRefGoogle Scholar
  36. Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091CrossRefGoogle Scholar
  37. Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New YorkGoogle Scholar
  38. Fuentes D, Valdecantos A, Llovet J, Cortina J, Vallejo VR (2010) Fine-tuning of sewage sludge application to promote the establishment of Pinus halepensis seedlings. Ecol Eng 36:1213–1221CrossRefGoogle Scholar
  39. Gimeno-Garcia E, Andreu V, Rubio JL (2000) Changes in organic matter, nitrogen and phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur J Soil Sci 51:201–210CrossRefGoogle Scholar
  40. Gimeno-Garcia E, Andreu V, Rubio JL (2007) Influence of vegetation recovery on water erosion at short and medium-term after experimental fires in a Mediterranean shrubland. Catena 69:150–160CrossRefGoogle Scholar
  41. Giusquiani PL, Pagliai M, Gigliotti G, Businelli D, Benetti A (1995) Urban waste compost: effects on physical, chemical, and biochemical soil properties. J Environ Qual 24:175–182CrossRefGoogle Scholar
  42. González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870PubMedCrossRefGoogle Scholar
  43. Griess P (1879) Benerkungen zuder abhandlung der HH. Weselski und Benedikt "Ueberieinige hzoverbindun". Chem Ber 12:426–428Google Scholar
  44. Guerrero C, Gómez I, Mataix Solera J, Moral R, Mataix-Beneyto J, Hernández T (2000) Effect of solid waste compost on microbiological and physical properties of a burnt forest soil in field experiments. Biol Fertil Soils 32:410–414CrossRefGoogle Scholar
  45. Guerrero C, Gómez I, Moral R, Mataix-Solera J, Mataix-Beneyto J, Hernández T (2001) Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery. Bioresour Technol 76:221–227PubMedCrossRefGoogle Scholar
  46. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI (2005) Post-fire vegetation dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–184CrossRefGoogle Scholar
  47. Hemmat A, Aghilinategh N, Rezainejad Y, Sadeghi M (2010) Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Tillage Res 108:43–50CrossRefGoogle Scholar
  48. Hernández T, García C, Reinhardt I (1997) Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biol Fertil Soils 25:109–116CrossRefGoogle Scholar
  49. Hernández E, Vilagrosa A, Pausas J, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244CrossRefGoogle Scholar
  50. Hudson BD (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194Google Scholar
  51. Ilosvay ML (1889) L'acide azoteux dans la salive et dans l'aire exhale. Bull Soc Chim 2:388–391Google Scholar
  52. Jonasson S (1983) The point intercept method for non-destructive estimation of biomass. Phytocoenologia 11:385–388CrossRefGoogle Scholar
  53. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press LLC, Boca RatonGoogle Scholar
  54. Keeley JE (1986) Resilience of Mediterranean shrub communities to fire. In: Dell B, Hopkins AJM, Lamont BB (eds) Resilience in Mediterranean-type ecosystems. Dr W Junk Publishers, Dordrecht, pp 95–112CrossRefGoogle Scholar
  55. Khanna PH, Ulrich B (1984) Soil characteristics influencing nutrient supply in forest soils. In: Bowen GD, Nambiar EKS (eds) Nutrition of plantation forests. Academic, London, pp 79–118Google Scholar
  56. Kleinman PJA, Bryant RB, Reid WS, Sharpley AN, Pimentel D (2000) Using soil P behavior to identify environmental thresholds. Soil Sci 165:943–950CrossRefGoogle Scholar
  57. Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118CrossRefGoogle Scholar
  58. Kowaljow E, Mazzarino MJ (2007) Soil restoration in semiarid Patagonia: chemical and biological response to different compost quality. Soil Biol Biochem 39:1580–1588CrossRefGoogle Scholar
  59. Kowaljow E, Mazzarino MJ, Satti P, Jiménez-Rodríguez C (2010) Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant Soil 332:135–145CrossRefGoogle Scholar
  60. Larchevêque M, Montès N, Baldy V, Dupouyet S (2005) Vegetation dynamics after compost amendment in a Mediterranean post-fire ecosystem. Agric Ecosyst Environ 110:241–248CrossRefGoogle Scholar
  61. Larchevêque M, Baldy V, Montès N, Fernandez C, Bonin G, Ballini C (2006a) Short-term effects of sewage-sludge compost on a degraded Mediterranean soil. Soil Sci Soc Am J 70:1178–1188CrossRefGoogle Scholar
  62. Larchevêque M, Ballini C, Korboulewsky N, Montès N (2006b) The use of compost in afforestation of Mediterranean areas: effects on soil properties and young tree seedlings. Sci Total Environ 369:220–230PubMedCrossRefGoogle Scholar
  63. Larchevêque M, Ballini C, Baldy V, Korboulewsky N, Ormeño E, Montès N (2010) Restoration of a Mediterranean postfire shrubland: plant functional responses to organic soil amendment. Restor Ecol 18:729–741CrossRefGoogle Scholar
  64. Larson JL, Siemann E (1998) Legumes may be symbiont-limited during old-field succession. Am Midl Nat 140:90–95CrossRefGoogle Scholar
  65. Lloret F, Vilà M (1997) Clearing of vegetation in Mediterranean garrigue: response after a wildfire. For Ecol Manag 93:227–234CrossRefGoogle Scholar
  66. Martinez F, Cuevas G, Calvo R, Walter I (2003a) Biowaste effects on soil and native plants in a semiarid ecosystem. J Environ Qual 32:472–479PubMedCrossRefGoogle Scholar
  67. Martinez F, Casermeiro MA, Morales D, Cuevas G, Walter I (2003b) Effects on run-off water quantity and quality of urban organic wastes applied in a degraded semi-arid ecosystem. Sci Total Environ 305:13–21PubMedCrossRefGoogle Scholar
  68. Martin-Prével P (1978) Rôle des éléments minéraux chez les végétaux. Fruits 33:521–529Google Scholar
  69. McDowell RW, Sharpley AN (2004) Variation of phosphorus leached from Pennsylvanian soils amended with manures, composts or inorganic fertilizer. Agric Ecosyst Environ 102:17–27CrossRefGoogle Scholar
  70. Metson AJ (1956) Methods of chemical analysis for soil survey samples. New Zealand Soil Bureau. Bull 12Google Scholar
  71. Moffet CA, Zartman RE, Wester DB, Sosebee RE (2005) Surface biosolids application: effects on infiltration, erosion, and soil organic carbon in Chihuahuan desert grasslands and shrublands. J Environ Qual 34:299–311PubMedCrossRefGoogle Scholar
  72. Mohamed A, Härdtle W, Jirjahn B, Niemeyer T, von Oheimb G (2007) Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189:279–289CrossRefGoogle Scholar
  73. Montès N, Maestre FT, Ballini C, Baldy V, Gauquelin T, Planquette M, Greff S, Dupouyet S, Perret JB (2008) On the relative importance of the effects of selection and complementarity as drivers of diversity-productivity relationships in Mediterranean shrublands. Oikos 117:1345–1350CrossRefGoogle Scholar
  74. Moreno JL, García C, Hernández T, Pascual JA (1996) Transference of heavy metals from a calcareous soil amended with sewage-sludge compost to barley plants. Bioresour Technol 55:251–258CrossRefGoogle Scholar
  75. Mubiru DN, Karathanasis AD (1994) Phosphorus-sorption characteristics of intensely weathered soils in south-central Kentucky. Commun Soil Sci Plant Anal 25:2745–2759CrossRefGoogle Scholar
  76. NF U 44-095 (2002) Amendements organiques: composts contenant des matières d’intérêt agronomique issues du traitement des eaux. AFNOR, Journal Officiel n° 73 du 26/03/2004, Paris, FranceGoogle Scholar
  77. Ojeda G, Alcañiz JM, Le Bissonais Y (2008) Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agric Ecosyst Environ 125:48–56CrossRefGoogle Scholar
  78. Olsen SR, Cola CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ US Dep Agric 939:1–19Google Scholar
  79. Paula S, Pausas J (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331PubMedCrossRefGoogle Scholar
  80. Pausas J, Ribeiro E, Vallejo R (2004) Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For Ecol Manag 203:251–259CrossRefGoogle Scholar
  81. Piccolo A, Mbagwu JSC (1999) Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci Soc Am J 63:1801–1810CrossRefGoogle Scholar
  82. Planquart P, Bonin G, Prone A, Massiani C (1999) Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts: application to low metal loadings. Sci Total Environ 241:161–179CrossRefGoogle Scholar
  83. Prieto-Fernández A, Carballas M, Carballas T (2004) Inorganic and organic N pools in soils burned or heated: immediate alterations and evolution after forest wildfires. Geoderma 121:291–306CrossRefGoogle Scholar
  84. Reich PB, Peterson DW, Wedin DA, Wrage K (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:1703–1719Google Scholar
  85. Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM, de Felipe MR (2006) Afforestation of degraded soils with Pinus halepensis Mill.: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl Soil Ecol 34:42–51CrossRefGoogle Scholar
  86. Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A (2009) Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. For Ecol Manag 257:739–746CrossRefGoogle Scholar
  87. Román R, Fortún C, García López De Sá ME, Almendros G (2003) Successful soil remediation and reforestation of a calcic regosol amended with composted urban waste. Arid Land Res Manag 17:297–311CrossRefGoogle Scholar
  88. Römkens PFAM, Salomons W (1998) Cd, Cu and Zn solubility in arable and forest soils: consequences of land use changes for metal mobility and risk assessment. Soil Sci 163:859–871CrossRefGoogle Scholar
  89. Rundel PW (1988) Leaf structure and nutrition in Mediterranean-climate sclerophylls. In: Specht RL (ed) Mediterranean-type ecosystems: a data-source book. Kluwer Academic Publishers, Dordrecht, pp 157–167CrossRefGoogle Scholar
  90. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  91. Searle PL (1984) The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109:549–568Google Scholar
  92. Simões M, Madeira M, Gazarini L (2009) Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas. Plant Soil 323:249–265CrossRefGoogle Scholar
  93. Thomas AD, Walsh RPD, Shakesby A (1999) Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal. Catena 36:283–302CrossRefGoogle Scholar
  94. Trabaud L (1987) Dynamics after fire of sclerophyllous plant communities in the Mediterranean basin. Ecol Mediterr XIII:25–38Google Scholar
  95. Trabaud L, Lepart J (1980) Diversity and stability in garrigue ecosystems after fire. Vegetatio 43:49–57CrossRefGoogle Scholar
  96. Turrión MB, Lafuente F, Mulas R, López O, Ruipérez C, Pando V (2012) Effects on soil organic matter mineralization and microbiological properties of applying compost to burned and unburned soils. J Environ Manag 95:S245–S249CrossRefGoogle Scholar
  97. Villar MC, González-Prieto SJ, Carballas T (1998) Evaluation of three organic wastes for reclaiming burnt soils: improvement in the recovery of vegetation cover and soil fertility in pot experiments. Biol Fertil Soils 26:122–129CrossRefGoogle Scholar
  98. Vitousek PM, Field CB (1999) Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46:179–202Google Scholar
  99. Walter I, Calvo R (2009) Biomass production and development of native vegetation following biowaste amendment of a degraded, semi-arid soil. Arid Land Res Manag 23:297–310CrossRefGoogle Scholar
  100. Walter I, Martinez F, Cuevas G (2006) Plant and soil responses to the application of composted MSW in a degraded, semiarid shrubland in central Spain. Compost Sci Util 14:147–154CrossRefGoogle Scholar
  101. Whalen JK, Chang C (2001) Phosphorus accumulation I cultivated soils from long-term annual applications of cattle feedlot manure. J Environ Qual 30:229–237PubMedCrossRefGoogle Scholar
  102. Whelan RJ (1995) The ecology of fire. Cambridge University Press, CambridgeGoogle Scholar
  103. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall International, UKGoogle Scholar
  104. Zebarth BJ, Neilsen GH, Hogue E, Nielsen D (1999) Influence of organic waste amendments on selected soil physical and chemical properties. Can J Soil Sci 79:501–504CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Antoine Cellier
    • 1
  • Thierry Gauquelin
    • 1
  • Virginie Baldy
    • 1
  • Christine Ballini
    • 1
  1. 1.Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale, UMR 7263 CNRS-237 IRD- UAPVAix-Marseille UniversitéMarseille cedex 3France

Personalised recommendations