Plant and Soil

, Volume 375, Issue 1–2, pp 275–287 | Cite as

Role of heme oxygenase-1 in spermidine-induced alleviation of salt toxicity during alfalfa seed germination

  • Kaikai Zhu
  • Jing Zhang
  • Weiti Cui
  • Qijiang Jin
  • Muhammad Kaleem Samma
  • Wenbiao Shen
Regular Article



This study investigated molecular mechanism of spermidine (Spd)-mediated enhancement of tolerance against salinity during alfalfa seed germination.


A combination of histochemical, physiological and molecular approaches was used to study the effect of Spd on the alleviation of salt toxicity.


Exogenously applied Spd (100 μM) and a heme oxygenase-1 (HO-1) inducer hemin (10 μM) not only up-regulated alfalfa HO-1 gene expression and increased its protein level and activity, but also significantly alleviated the inhibitory effects of 100 mM NaCl on seed germination and seedling growth. K+ to Na+ ratio was also increased. Further results revealed that total, isozymatic activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), were induced differentially. These antioxidant behaviors were confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Above cytoprotective role of Spd is specific for HO-1 because the inhibitor of HO-1 significantly suppressed above responses, and some of the inhibitory effects were reversed when 10 % carbon monoxide (CO)-saturated aqueous solution was added.


Together, our results suggested that Spd-mediated alleviation of NaCl toxicity during alfalfa seed germination acts, at least partially, in a HO-1-dependent pathway.


Heme oxygenase-1 Ion homeostasis Medicago sativa Oxidative damage Salinity Seed germination Spermidine 



Ascorbate peroxidase






Carbon monoxide


Heme oxygenase


Heme oxygenase-1




Medicago sativa cDNA 27


Guaiacol peroxidase


Reactive oxygen species


Superoxide dismutase




Zinc protoporphyrin IX



This work was financially supported by the National Natural Science Foundation of China (J1210056,J1310015), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. doi: 10.1007/s00425-010-1130-0 PubMedCrossRefGoogle Scholar
  2. Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38. doi: 10.1016/j.plantsci.2010.07.022 PubMedCrossRefGoogle Scholar
  3. Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, Li DZ (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53:710–720. doi: 10.1016/j.freeradbiomed.2012.05.042 PubMedCrossRefGoogle Scholar
  4. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi: 10.1016/0003-2697(71)90370-8 PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  6. Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199. doi: 10.1034/j.1399-3054.2002.1160208.x PubMedGoogle Scholar
  7. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012) Interaction of brassinsteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675. doi: 10.1093/jxb/ers219 PubMedCrossRefGoogle Scholar
  8. Cui W, Zhang J, Xuan W, Xie Y (2013) Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa. J Plant Physiol 170:1328–1336. doi: 10.1016/j.jplph.2013.05.014 PubMedCrossRefGoogle Scholar
  9. Duan JJ, Li J, Guo SR, Kang YY (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. doi: 10.1016/j.jplph.2007.11.006 PubMedCrossRefGoogle Scholar
  10. Fan HF, Du CX, Guo SR (2013) Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ Exp Bot 86:52–59. doi: 10.1016/j.envexpbot.2010.09.007 CrossRefGoogle Scholar
  11. Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945. doi: 10.1007/s11738-009-0307-2 CrossRefGoogle Scholar
  12. Fu GQ, Xu S, Xie YJ, Han B, Nie L, Shen WB, Wang R (2011) Molecular cloning, characterization, and expression of an alfalfa (Medicago sativa L.) heme oxygenase-1 gene, MsHO1, which is pro-oxidants-regulated. Plant Physiol Biochem 49:792–799. doi: 10.1016/j.plaphy.2011.01.018 PubMedCrossRefGoogle Scholar
  13. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45. doi: 10.1007/s00726-007-0501-8 PubMedCrossRefGoogle Scholar
  14. Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615. doi: 10.1016/j.phytochem.2008.07.016 PubMedCrossRefGoogle Scholar
  15. Han Y, Zhang J, Chen X, Gao Z, Xuan W, Xu S, Ding X, Shen W (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166. doi: 10.1111/j.1469-8137.2007.02251.x PubMedGoogle Scholar
  16. Han B, Yang Z, Samma MK, Wang R, Shen W (2013) Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis. Biometals 26:403–413. doi: 10.1007/s10534-013-9623-5 PubMedCrossRefGoogle Scholar
  17. Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46. doi: 10.1016/j.plaphy.2011.10.006 PubMedCrossRefGoogle Scholar
  18. Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J (2012) Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant Physiol Biochem 57:200–209. doi: 10.1016/j.plaphy.2012.05.015 PubMedCrossRefGoogle Scholar
  19. Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30. doi: 10.1007/s10725-005-5901-8 CrossRefGoogle Scholar
  20. Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36:956–969. doi: 10.1111/pce.12029 PubMedCrossRefGoogle Scholar
  21. Kwak MK, Kensler TW, Casero RA Jr (2003) Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem Biophys Res Commun 305:662–670. doi: 10.1016/S0006-291X(03)00834-9 PubMedCrossRefGoogle Scholar
  22. Lamar CA, Mahesh VB, Brann DW (1996) Regulation of gonadotrophin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide? Endocrinology 137:790–793. doi: 10.1210/en.137.2.790 PubMedGoogle Scholar
  23. Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544–555. doi: 10.1016/j.plantsci.2006.11.007 CrossRefGoogle Scholar
  24. Liu Y, Xu S, Ling T, Xu L, Shen W (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379. doi: 10.1016/j.jplph.2010.05.021 PubMedCrossRefGoogle Scholar
  25. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x PubMedCrossRefGoogle Scholar
  26. Minarini A, Milelli A, Tumiatti V, Rosini M, Bolognesi ML, Melchiorre C (2010) Synthetic polyamines: an overview of their multiple biological activities. Amino Acids 38:383–392. doi: 10.1007/s00726-009-0430-9 PubMedCrossRefGoogle Scholar
  27. Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G, Muroi A, Horiuchi J, Nishioka T, Maffei ME, Takabayashi J (2009) Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and jasmonic acid. Plant Cell Physiol 50:2183–2199. doi: 10.1093/pcp/pcp153 PubMedCrossRefGoogle Scholar
  28. Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992. doi: 10.1016/S0168-9452(02)00272-8 CrossRefGoogle Scholar
  29. Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591. doi: 10.1016/j.plantsci.2004.08.014 CrossRefGoogle Scholar
  30. Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328. doi: 10.1016/j.jplph.2010.07.009 PubMedCrossRefGoogle Scholar
  31. Ryter SW, Otterbein LE, Morse D, Choi AM (2002) Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234–235:249–263. doi: 10.1023/A:1015957026924 PubMedCrossRefGoogle Scholar
  32. Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255–2270. doi: 10.1093/jxb/erq074 PubMedCrossRefGoogle Scholar
  33. Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43. doi: 10.1007/s10725-005-6395-0 CrossRefGoogle Scholar
  34. Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354. doi: 10.1093/pcp/pci252 PubMedCrossRefGoogle Scholar
  35. Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11. doi: 10.1186/gb-2002-3-7-research0034 CrossRefGoogle Scholar
  36. Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539. doi: 10.1016/j.plaphy.2010.01.011 PubMedCrossRefGoogle Scholar
  37. Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603. doi: 10.1016/j.plantsci.2011.04.002 PubMedCrossRefGoogle Scholar
  38. Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248. doi: 10.1093/jxb/erq261 PubMedCrossRefGoogle Scholar
  39. Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan XX, He ZY, Hu B, Fang L, Shen ZG, Yang Q, Shen WB (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31:1864–1881. doi: 10.1111/j.1365-3040.2008.01888.x PubMedCrossRefGoogle Scholar
  40. Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66:280–292. doi: 10.1111/j.1365-313X.2011.04488.x PubMedCrossRefGoogle Scholar
  41. Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W (2013) Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. J Exp Bot 64:3045–3060. doi: 10.1093/jxb/ert149 PubMedCrossRefGoogle Scholar
  42. Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, Shen WB (2006) Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J Integr Plant Biol 48:1168–1176. doi: 10.1111/j.1672-9072.2006.00337.x CrossRefGoogle Scholar
  43. Xu S, Lou T, Zhao N, Gao Y, Dong L, Jiang D, Shen W, Huang L, Wan R (2011) Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiol Plant 33:1173–1183. doi: 10.1007/s11738-010-0645-0 CrossRefGoogle Scholar
  44. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208. doi: 10.1104/pp. 125.1.199 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Yang H, Lee SE, Kim GD, Park HR, Park YS (2013) Hemeoxygenase-1 mediates an adaptive response to spermidine-induced cell death in human endothelial cells. Oxidative Med Cell Longev. doi: 10.1155/2013/238734 Google Scholar
  46. Yiu JC, Liu CW, Fang DY, Lai YS (2009) Waterlogging tolerance of Welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol Biochem 47:710–716. doi: 10.1016/j.plaphy.2009.03.007 PubMedCrossRefGoogle Scholar
  47. Zapata PJ, Serrano M, Pretel MT, Amorós A, Botella MÁ (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788. doi: 10.1016/j.plantsci.2004.05.014 CrossRefGoogle Scholar
  48. Zhang H, Shen WB, Xu LL (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Bot Sin 45:901–905Google Scholar
  49. Zhang C, Li Y, Yuan F, Hu S, He P (2012) Effect of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil 359:85–105. doi: 10.1007/s11104-012-1194-7 CrossRefGoogle Scholar
  50. Zhao FG, Qin P (2004) Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97–103. doi: 10.1023/B:GROW.0000017478.40445.bc CrossRefGoogle Scholar
  51. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi: 10.1016/S1360-1385(00)01838-0 PubMedCrossRefGoogle Scholar
  52. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi: 10.1016/S1369-5266(03)00085-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kaikai Zhu
    • 1
  • Jing Zhang
    • 1
  • Weiti Cui
    • 1
  • Qijiang Jin
    • 1
  • Muhammad Kaleem Samma
    • 1
  • Wenbiao Shen
    • 1
  1. 1.College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations