Plant and Soil

, Volume 372, Issue 1–2, pp 151–165 | Cite as

Transcriptomic and proteomic comparison of two Miscanthus genotypes: high biomass correlates with investment in primary carbon assimilation and decreased secondary metabolism

  • Daniel Straub
  • Huaiyu Yang
  • Yan Liu
  • Uwe Ludewig
Regular Article


Background and aims

The plant genus Miscanthus combines high biomass production in temperate climates with low nutrient input requirements. Among the widely studied genotypes, the triploid hybrid Miscanthus x giganteus has attracted most interest because of its outstanding yields. Here, M. x giganteus was compared to its parent M. sinensis to identify traits associated with high biomass.


Comparative investigation of the element content, photosynthesis, transcriptomes and proteomes.


Photosynthesis-related and Calvin cycle enzymes are among the key traits differing between the two species. Major transcriptional differences pinpoint to a reduced investment into the secondary metabolism in M. x giganteus during rapid growth. A higher nitrogen, potassium and zinc concentration was found in the leaves of M. x giganteus. In the shotgun sequences of the leaf transcriptome, bacterial 16S sequences were identified. These were dominated by α–, γ–, δ–proteobacteria, despite Herbaspirillum and Clostridium species had been previously isolated from Miscanthus.


Miscanthus species thus differ in several key traits, which may help to guide future phenotyping efforts to select for high yielding varieties for sustainable biomass production. Having established these techniques in Miscanthus, the next step is to apply them in breeders’ germplasm.


Biomass Bioenergy Sustainability Microbial metagenome Proteomics Transcriptomics Element content 



We thank Prof. Ralf Kaldenhoff (Technical University of Darmstadt, Germany) for generous support of lab space and the Life Science Center of the University of Hohenheim (Dr. Pfannstiel) for peptide analysis.

Authors’ contributions

DS carried out transcriptome work and analysis, YL, HY and DS performed the proteome work and UL conceived the study. DS and UL wrote the manuscript. All authors read and approved the final manuscript.

Supplementary material

11104_2013_1693_MOESM1_ESM.jpg (923 kb)
Fig. S1 List of differential expressed transcript clusters. Higher expression in M. x giganteus is indicated by red color, lower expression by blue color. The coloring was according to a Bin-wise Wilcoxon test; only significantly regulated Bins are shown (z-score >1.96; p-value < 0.05). (JPEG 923 kb)
11104_2013_1693_MOESM2_ESM.jpg (61 kb)
Fig. S2 Average daily temperature and precipitation in 2010. Blue columns show precipitation and black curve average day temperature. The diagram is based on public accessible values of the Deutscher Wetter Dienst from station ID 1420. (JPEG 61 kb)


  1. Allison GG, Morris C, Clifton-Brown J, Lister SJ, Donnison IS (2011) Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass Bioenergy 35:4740–4747CrossRefGoogle Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106PubMedCrossRefGoogle Scholar
  3. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428CrossRefGoogle Scholar
  4. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefGoogle Scholar
  5. Chang CC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38:499–511PubMedCrossRefGoogle Scholar
  6. Chouvarine P, Cooksey AM, McCarthy FM, Ray DA, Baldwin BS, Burgess SC, Peterson DG (2012) Transcriptome-based differentiation of closely-related Miscanthus lines. PLoS One 7:e29850PubMedCrossRefGoogle Scholar
  7. Clifton-Brown JC, Lewandowski I (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agr 16:97–110CrossRefGoogle Scholar
  8. Clifton-Brown JC, Lewandowski I (2000) Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann Bot 86:191–200CrossRefGoogle Scholar
  9. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019CrossRefGoogle Scholar
  10. Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB (2002) Comparative responses to water stress in stay-green, rapid-and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol 154:335–345CrossRefGoogle Scholar
  11. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145PubMedCrossRefGoogle Scholar
  12. Davis SC, Parton WJ, Dohleman FG, Smith CM, Del Grosso S, Kent AD, DeLucia EH (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus x giganteus agro-ecosystem. Ecosystems 13:144–156CrossRefGoogle Scholar
  13. Dohleman FG, Long SP (2009) More productive than maize in the midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115PubMedCrossRefGoogle Scholar
  14. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26PubMedGoogle Scholar
  15. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:503–537CrossRefGoogle Scholar
  16. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80PubMedCrossRefGoogle Scholar
  17. Gericke S, Kurmies B (1952) Die kolorimetrische Phosphorsäurebestimmung mit Ammonium–Vandadat–Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Düngg Pflanzenernähr Bodenk 59:235–247Google Scholar
  18. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt M (2004) A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325PubMedCrossRefGoogle Scholar
  19. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus-X-Giganteus Greef-Et-Deu. Angew Bot 67:87–90Google Scholar
  20. Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC, Donnison IS (2011) Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102:3411–3418PubMedCrossRefGoogle Scholar
  21. Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168PubMedGoogle Scholar
  22. Kruger EL, Volin JC (2006) Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct Plant Biol 33:421–429CrossRefGoogle Scholar
  23. Lawlor DW (1995) Photosynthesis, productivity and environment. J Exp Bot 48:1449–1461CrossRefGoogle Scholar
  24. Liu Y, Lamkemeyer T, Jakob A, Mi G, Zhang F, Nordheim A, Hochholdinger F (2006) Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Proteomics 6:4300–4308PubMedCrossRefGoogle Scholar
  25. Marschner P (2011) Marschner’s mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  26. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668PubMedCrossRefGoogle Scholar
  27. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586PubMedCrossRefGoogle Scholar
  28. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021PubMedCrossRefGoogle Scholar
  29. Sauer M, Jakob A, Nordheim A, Hochholdinger F (2006) Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics 6:2530–2541PubMedCrossRefGoogle Scholar
  30. Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36PubMedCrossRefGoogle Scholar
  31. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858PubMedCrossRefGoogle Scholar
  32. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792PubMedCrossRefGoogle Scholar
  33. Stewart R, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153CrossRefGoogle Scholar
  34. Su X, Xu J, Ning K (2012) Parallel-META: efficient metagenomic data analysis based on high-performance computation. BMC Syst Biol 6:S16PubMedCrossRefGoogle Scholar
  35. Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJ, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A 106:10348–10353PubMedCrossRefGoogle Scholar
  36. Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229PubMedCrossRefGoogle Scholar
  37. van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835Google Scholar
  38. VDLUFA (1997) Method book III - The chemical analysis of feedstuffs. VDLUFA Verlag, DarmstadtGoogle Scholar
  39. Wang D, Portis AR Jr, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus. Plant Physiol 148:557–567PubMedCrossRefGoogle Scholar
  40. Yan J, Chen W, Luo F, Ma H et al (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4:49–60CrossRefGoogle Scholar
  41. Zhang Y, Sun Y (2011) HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors. BMC Bioinforma 12:198CrossRefGoogle Scholar
  42. Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30:201–204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel Straub
    • 1
  • Huaiyu Yang
    • 1
  • Yan Liu
    • 1
  • Uwe Ludewig
    • 1
  1. 1.Institut für Kulturpflanzenwissenschaften, Ernährungsphysiologie der Kulturpflanzen (340h), Universität HohenheimStuttgartGermany

Personalised recommendations