Advertisement

Plant and Soil

, Volume 370, Issue 1–2, pp 367–380 | Cite as

Runoff and erosion from volcanic soils affected by fire: the case of Austrocedrus chilensis forests in Patagonia, Argentina

  • Daniela Morales
  • César Mario Rostagno
  • Ludmila La Manna
Regular Article

Abstract

Aims

We characterized the runoff and erosion from a volcanic soil in an Austrocedrus chilensis forest affected by a wildfire, and we evaluated the effects of a mitigation treatment.

Methods

Rainfall simulations were performed in the unburned and burned forest, with and without vegetation cover, and under a mitigation treatment.

Results

After the wildfire, the mean infiltration rate decreased from 100 mm h−1 in unburned soils to 51 and 64 mm h−1 in the burned with and without litter and vegetation cover, respectively. The fast establishment of bryophytes accelerated the recovery of soil stability. Sediment production was negligible in the control plots (4.4 g m−2); meanwhile in the burned plots, it was 118.7 g m−2 and increased to 1026.1 g m−2 in the burned and bare plots. Total C and N losses in the control plots were negligible, while in the burned and bare plots the organic C and total N removed were 98.25 and 1.64 g m2, respectively. The effect of mitigation treatment was efficient in reducing the runoff, but it did not affect the sediment production.

Conclusions

These fertile volcanic soils promoted the recovery of vegetation in a short time after the wildfire, diminishing the risk of erosion.

Keywords

Austrocedrus chilensis Erosion Mitigation Volcanic soils Wildfire 

Notes

Acknowledgments

We acknowledge Lina Videla, Juan Monges and Iván Portscher for their help with the fieldwork. This research was supporting by PICTO 36860 of the National Agency for Scientific and Technological Promotion (ANPCyT).

References

  1. Adema E, Babinec F, Peinemann N (2001) Pérdida de nutrientes por erosión hídrica en dos suelos del caldenal pampeano. Cien Suelo 19(2):144–154Google Scholar
  2. Aguilar V, Cacheux I, Alvarez H (2004) Las costras biológicas del suelo y las zonas áridas. Ciencias 75:24–27Google Scholar
  3. Alauzis M, Mazzarino M, Raffaele E, Roselli L (2004) Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. For Ecol Manag 192:131–142CrossRefGoogle Scholar
  4. Arcenegui V, Mataix-Solera J, Guerrero C, Zornoza R, Mataix-Beneyto J, García-Orenes F (2008) Immediate effects of wildfires on water repellency and aggregate stabili- ty in Mediterranean calcareous soils. Catena 74:219–226CrossRefGoogle Scholar
  5. Armas C, Arbelo C, Guerra J, Mora J, Notario J, Rodríguez A (2004) Erodibility of forest Andosols and soil properties. XIII International Soil Conservation Organization Conference, Brisbane Julio 2004. 4pGoogle Scholar
  6. Assouline S (2004) Rainfall-induced soil surface sealing: a critical review of observations conceptual models and solutions. Vadose Zone J 3:570–591Google Scholar
  7. Avnimelech Y, McHenry J (1984) Enrichment of transported sediments with organic carbon nutrients and clay. Soil Sci Soc Am J 48:259–266CrossRefGoogle Scholar
  8. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178CrossRefGoogle Scholar
  9. Benavides-Solorio J, MacDonald L (2001) Post-fire runoff and erosion from simulated small plots Colorado Front Range. Hydrol Process 15:2931–2952CrossRefGoogle Scholar
  10. Benito E, Santiago J, de Blas E, Varela M (2003) Deforestation of water-repellent soils in Galicia (NW Spain): effects on surface runoff and erosion under simulated rainfall. Earth Surf Process Landforms 28:145–155CrossRefGoogle Scholar
  11. Blake B (1965) Bulk density 374–390. In: Black CA (ed) Methods of soil analysis MonogrSer Part 1 No 9 Amer Sot Agron Madison WisGoogle Scholar
  12. Bond W, Midgley J (2003) The evolutionary ecology of sprouting in woody plants. Int J Plant Sci 164:S103–S114CrossRefGoogle Scholar
  13. Bowker M, Eldridge D, Maestre F (2012) Runoff source or sink? Biocrust hydrological function strongly depends on the relative abundance of mosses. Geophysical Research 14 General Assembly 2012Google Scholar
  14. Bran D, Pérez A, Barrios D, Pastorino M, Ayeza J (2002) Eco-región valdiviana: Distribución actual de los bosques de “ciprés de la cordillera” (Austrocedrus chilensis)–Escala 1:250000 INTA APN FVSA, BarilocheGoogle Scholar
  15. Bremner J, Mulvaney C (1982) Nitrogen total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Agronomy No 9 Part 2 American Society of Agronomy, Madison Wisconsin. 595–624Google Scholar
  16. Buol S, Hole F, Mc Cracken R (1991) Génesis y clasificación de suelos. Ed Trillas México 417 pGoogle Scholar
  17. Cerdà A, Ibàñez S, Calvo A (1997) Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technol 11:161–170CrossRefGoogle Scholar
  18. CIEFAP, DGByP, FIRE Paradox, MIAG Esquel, PNLA (2008) Informe de base para la restauración post-fuego “Incendio La Colisión” PN Los Alerces Esquel y Trevelin, 24pGoogle Scholar
  19. Cochrane M (2009) Tropical fire ecology: Climate change land use and ecosystem dynamics. Springer-Praxis Books in Environmental Sciences Germany. 645 pGoogle Scholar
  20. Cordon V, Forquera J, Gastiazoro J (1993) Estudio microclimático del área cordillerana del sudoeste de la Provincia de Río Negro Universidad Nacional del Comahue Cinco Saltos Neuquén. 17 pGoogle Scholar
  21. Crockford H, Topalidis S, Richardson D (1991) Water repellency in a dry sclerophyll eucalypt forest-measurements and processes. Hydrol Process 5:405–420CrossRefGoogle Scholar
  22. Davies B (1974) Loss-on ignition as an estimate of soil organic matter. Soil Sci Proc 38:150CrossRefGoogle Scholar
  23. Day P (1965) Particle fractionation and particle-size analysis. In: Black CA (ed) Methods of soil analysis Monogr Ser Part 1 No 9 Amer Soc Agron Madison Wis. p 545–567Google Scholar
  24. DeBano L (1981) Water repellent soils: a state of the art. Gen Tech Rep PSW-46 Berkeley Calif US Department of Agriculture Forest Service Pacific Southwest Forest and Range Exp Stn. 21 pGoogle Scholar
  25. DeBano L (1990) The effect of fire on soil properties. Symposium on Management and Productivity of Western-Montane Forest Soil Boise IDGoogle Scholar
  26. DeBano L (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232:195–206CrossRefGoogle Scholar
  27. DeBano L, Neary D, Ffolliott F (1998) Fire’s effects on ecosystems. Wiley, New York, 333pGoogle Scholar
  28. Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C (2010) Grupo InfoStat FCA Universidad Nacional de Córdoba Argentina. URL http://www.infostatcomar
  29. Doerr S (1998) On standardizing the “water drop penetration time” and the “molarity of an ethanol droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surf Process Landforms 23:663–668CrossRefGoogle Scholar
  30. Doerr S, Shakesby R, Walsh R (1996) Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda Basin Portugal. Catena 27:25–48CrossRefGoogle Scholar
  31. Eldridge D (2001) Biological soil crusts and water relations in Australian deserts. In: Lange O, Belnap J (eds) Structure function and management. Springer, Berlin, pp 315–325Google Scholar
  32. Evans R (1980) Mechanics of water erosion and their spatial and temporal controls: An empirical viewpoint. In: Kirkby MJ Morgan RPC (eds) Soil Erosion Wiley Chichester. pp 109–128Google Scholar
  33. Fieldes M, Perrot K (1966) The nature of allophane in soils part 3: rapid field and laboratory test for allophane. N Z J Sci 9:623–629Google Scholar
  34. Gaskin S, Gardner R (2001) The role of cryptogams in runoff and erosion control on bariland in the Nepal middle hills of the southern Himalaya Earth Surf. Process Landf 26:1303–1315CrossRefGoogle Scholar
  35. González-Pelayo O, Andreu V, Campo J, Gimeno-García E, Rubio J (2006) Hydrological properties of a Mediterranean soil burned with different fire intensities. Catena 68:186–193CrossRefGoogle Scholar
  36. Granged A, Zavala L, Jordán A, Bárcenas-Moreno G (2011) Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma 164:85–94CrossRefGoogle Scholar
  37. Irisarri J, Mendía J (1997) Relaciones suelo-paisaje en la evaluación de la potencialidad forestal de la Región Central Andino Patagónica Argentina. Bosque 18(1):21–30Google Scholar
  38. Jaramillo D (2004) Repelencia al agua en suelos con énfasis en Andisoles de Antioquia. Universidad Nacional Colombia sede Medellín 204pGoogle Scholar
  39. Jordan A, Zavala M, Mataix-Solera J, Nava A, Alanís N (2011) Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 84:136–147CrossRefGoogle Scholar
  40. Kitzberger T, Veblen T (1999) Fire-induced changes in northern Patagonian landscapes. Landsc Ecol 14:1–15CrossRefGoogle Scholar
  41. Kitzberger T, Raffaele E, Heinemann K, Mazzarino M (2005) Effects of fire severity in a North Patagonian subalpine forest. J Veg Sci 16:5–12CrossRefGoogle Scholar
  42. Kumar S, Singh R (2007) Erodibility studies under different land uses in north-west Himalayas. J Agric Phys 7:31–37Google Scholar
  43. La Manna L, Barroetaveña C (2011) Propiedades químicas del suelo en bosques de Nothofagus antarctica y Austrocedrus chilensis afectados por fuego. Rev FCA UNCUYO 43:41–55Google Scholar
  44. Larsen I, MacDonald L, Brown E, Rough D, Welsha J, Pietraszek J, Libohova Z, Benavides-Solorio J, Schaffrath K (2009) Causes of post-fire runoff and erosion: water repellency cover or soil sealing? Soil Sci Soc Am J 73:1393–1407CrossRefGoogle Scholar
  45. Loguercio G, Burschel P, Rey M (1999) El bosque de Ciprés de la Cordillera: su conservación y uso. Centro Forestal CIEFAP. Folleto de divulgación, 14. Esquel Chubut. 22 pGoogle Scholar
  46. MacDonald L, Huffman E (2004) Post-fire soil water repellency: persistence and soil moisture thresholds. Soil Sci Soc Am J 68:1729–1734CrossRefGoogle Scholar
  47. Martin D, Moody J (2001) Comparison of soil infiltration rates in burned and unburned mountainous watersheds. Hydrol Process 15:2893–2903CrossRefGoogle Scholar
  48. Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala L (2011) Fire effect on soil aggregation: a review. Earth Sci Rev 109:44–60CrossRefGoogle Scholar
  49. Middleton H (1930) Properties of soils which influence soil erosion. Technical Bulletin 178. United States of Agriculture WashingtonGoogle Scholar
  50. Mussini E, Crespo G, Bianco H (1984) Evolución de la materia orgánica de la Provincia del Neuquén. Cien Suelo 2:53–60Google Scholar
  51. Myronidis D, Emmanouloudis E, Mitsopoulos I, Riggos E (2010) Soil erosion potential after fire and rehabilitation treatments in Greece. Environ Model Assess 15:239–250CrossRefGoogle Scholar
  52. Neary D, Klopatek C, DeBano L, Ffollioutt P (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71CrossRefGoogle Scholar
  53. Pastorino M, Fariña M, Bran D, Gallo L (2006) Extremos geográficos de la distribución natural de Austrocedrus chilensis (Cupressaceae). Bol Soc Argent Bot 41:307–311Google Scholar
  54. Quintanilla-Pérez V (1996) Alteraciones por el fuego en la cordillera de la costa de Chile Mediterraneo Antecedentes en un Parque Nacional Pirineos. 147–148: 97–113Google Scholar
  55. Robichaud P (2000) Forest fire effect on hillslope erosion: What we know. Watershed Management Council Networker. 9(1)Google Scholar
  56. Robichaud P, Waldrop T (1994) A comparison of surface runoff and sediment yields from low-and-high severity site preparation burns. Water Resour Bull 30:27–34CrossRefGoogle Scholar
  57. Robichaud P, Beyers J, Neary D (2000) Evaluating the effectiveness of postfire rehabilitation treatments. General Technical Report RMRS-GTR-63 US Department of Agriculture Forest Service Rocky Mountain Research Station Fort Collins COGoogle Scholar
  58. Robichaud P, Pierson F, Brown R (2007) Runoff and erosion effects after prescribed fire and wildfire on volcanic ash cap soils. USDA forest service proceedings. 83–94Google Scholar
  59. Robichaud P, Pierson F, Brown R, Wagenbrenner J (2008) Measuring effectiveness of three postfire hillslope erosion barrier treatments western Montana USA. Hydrol Process 22:159–170CrossRefGoogle Scholar
  60. Rodriguez-Rodriguez A, Arbelo C, Guerra J, Mora J (2002) Erosión hídrica en Andosoles de las Islas canarias. Edafología 9(1):23–30Google Scholar
  61. Rostagno C (1989) Infiltration and sediment production as affected by soil surface conditions in a shrubland of Patagonia Argentina. J Range Manage 42(5)Google Scholar
  62. Rostagno C, Garayzar D (1995) Desarrollo de un simulador de lluvia para estudios de infiltración y erosión de suelos. Cien Suelo 13:41–43Google Scholar
  63. Ryömä R, Laaka-Lindberg S (2005) Bryophyte recolonization on burnt soil and logs. Scand J For Res 20:5–16CrossRefGoogle Scholar
  64. Schiettecatte W, Gabriels D, Cornelis W, Hofman G (2008) Enrichment of organic carbon in sediment transport by interrill and rill erosion processes. Soil Sci Soc J 72:50–455CrossRefGoogle Scholar
  65. Scott D, Van Wyk D (1990) The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J Hydrol 121:239–256CrossRefGoogle Scholar
  66. Shakesby R (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci Rev 105:71–100CrossRefGoogle Scholar
  67. Shakesby R, Doerr S (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74:269–307CrossRefGoogle Scholar
  68. Sharpley A (1985) The selective erosion of plant nutrients in runoff. Soil Sci Soc Am J 49:1527–1534CrossRefGoogle Scholar
  69. Singh M, Khera K (2008) Soil erodibility indices under different land uses lower Shiwaliks. Trop Ecol 49(2):113–119Google Scholar
  70. Soil Survey Staff (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 436, USDA Soil Conservation Service. U.S. Government Printing Office, Washington, DCGoogle Scholar
  71. Turetsky M (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409CrossRefGoogle Scholar
  72. Urretavizcaya F (2010) Propiedades de suelos en bosques quemados de Austrocedrus chilensis en Patagonia Argentina. Bosque 31(2):140–149Google Scholar
  73. Varela S, Gobbi M, Laoss F (2006) Banco de semillas de un bosque quemado de Nothofagus pumilio: efecto de la aplicación de compost de biosólidos. Ecol Aust 16:63–78Google Scholar
  74. Veblen T, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67CrossRefGoogle Scholar
  75. Voroney R, van Veen J, Paul E (1981) Organic carbon dynamics in grassland soils II Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can J Soil Sci 61:211–224CrossRefGoogle Scholar
  76. Wada K (1985) The distinctive properties of Andosols. Adv Soil Sci 2:173–229CrossRefGoogle Scholar
  77. Wagenbrenner J, MacDonald L, Rough D (2006) Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrol Process 20:2989–3006CrossRefGoogle Scholar
  78. Warren S (2001) Biological soil crusts and hydrology in North American deserts. In: Belnap J, Lange O (eds) Biological soil crusts: Structure function and management. Springer, Berlin, pp 327–337CrossRefGoogle Scholar
  79. Young R, Olness A, Mutchler C, Moldenhauer W (1986) Chemical and physical enrichments of sediment from cropland. Trans ASAE 29:165–169Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniela Morales
    • 1
    • 2
    • 3
  • César Mario Rostagno
    • 3
    • 4
  • Ludmila La Manna
    • 1
    • 2
    • 3
  1. 1.Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)EsquelArgentina
  2. 2.Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB)EsquelArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Centro Nacional Patagónico (CENPAT)Puerto MadrynArgentina

Personalised recommendations