Skip to main content
Log in

Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum aestivum L.) under salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

This study investigated the effect of cyanobacterial inoculants on salt tolerance in wheat.

Methods

Unicyanobacterial crusts of Nostoc, Leptolyngbya and Microcoleus were established in sand pots. Salt stress was targeted at 6 and 13 dS m−1, corresponding to the wheat salt tolerance and 50 % yield reduction thresholds, respectively. Germinated wheat seeds were planted and grown for 14 (0 and 6 dS m−1) and 21 (13 dS m−1) days by which time seedlings had five emergent leaves. The effects of cyanobacterial inoculation and salinity on wheat growth were quantified using chlorophyll fluorescence, inductively coupled plasma-optical emission spectrometry and biomass measurements.

Results

Chlorophyll fluorescence was negatively affected by soil salinity and no change was observed in inoculated wheat. Effective photochemical efficiency correlated with a large range of plant nutrient concentrations primarily in plant roots. Inoculation negatively affected wheat biomass and nutrient concentrations at all salinities, though the effects were fewer as salinity increased.

Conclusions

The most likely explanation of these results is the sorption of nutrients to cyanobacterial extracellular polymeric substances, making them unavailable for plant uptake. These results suggest that cyanobacterial inoculation may not be appropriate for establishing wheat in saline soils but that cyanobacteria could be very useful for stabilising soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Baky HH, El-Baz FK, El Baroty GS (2008) Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments. J Sci Food Agric 90:299–303

    Article  Google Scholar 

  • Ahmed M, Stal LJ, Hasnain S (2010) Association of non-heterocystous cyanobacteria with crop plants. Plant Soil 336:363–375

    Article  CAS  Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  PubMed  CAS  Google Scholar 

  • Atak M, Kaya MD, Kaya G, Çikili Y, Çiftçi CY (2006) Effects of NaCl on the germination, seedling growth and water uptake of Triticale. Turk J Agric 30:39–47

    CAS  Google Scholar 

  • Aziz MA, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pakistan J Biol Sci 6:1751–1752

    Article  Google Scholar 

  • Aziz MA, Hashem MA (2004) Role of cyanobacteria on yield of rice in saline soil. Pakistan J Biol Sci 7:309–311

    Article  Google Scholar 

  • Belkhodja R, Morales F, Abadia A, Medrano H, Abadia J (1999) Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under triple-line-source sprinkler system in the field. Photosynth 36:375–387

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between antioxidant defense systems and salt tolerance in Solanum tuberosum. Funct Plant Biol 27:273–278

    Article  CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Internat 32:191–198

    Article  CAS  Google Scholar 

  • Blanco A, Sanz B, Llama MJ, Serra JL (1998) Reutilization of non-viable biomass of Phormidium laminosum for metal biosorption. Biotechnol Appl Biochem 27:167–174

    CAS  Google Scholar 

  • Blanco A, Sanz B, Llama MJ, Serra JL (1999) Biosorption of heavy metals to immobilised Phormidium laminosum biomass. J Biotechnol 69:227–240

    Article  CAS  Google Scholar 

  • Charman PEV, Wooldridge AC (2000) Soil chemical properties: Soil salinisation. In: Charman PEV, Murphy BW (eds) Soils: their properties and management. Oxford University Press, Melbourne, Oxford, pp 237–245

    Google Scholar 

  • de Philippis R, Paperi R, Sili C, Vincenzini M (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161

    Article  Google Scholar 

  • de Philippis R, Paperi R, Sili C (2007) Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria. Biodegrad 18:181–187

    Article  CAS  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. 2.12.0 edn. R Foundation for statistical computing, Vienna, Austria

  • El-Hendawy SE, Hu Y, Schmidhalter U (2005a) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust J Agric Res 56:123–134

    Article  CAS  Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005b) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253

    Article  CAS  Google Scholar 

  • Flemming H-C (2011) The perfect slime. Colloid Surface B 86:251–259

    Article  CAS  Google Scholar 

  • Gantar M (2000) Mechanical damage of roots provides enhanced colonisation of the wheat endorhizosphere by dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. Biol Fert Soils 32:250–255

    Article  Google Scholar 

  • Gantar M, Elhai J (1999) Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. New Phytol 141:373–379

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1991a) Colonisation of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study. New Phytol 118:485–492

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z (1991b) Colonisation of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: I. A survey of soil cyanobacterial isolates forming associations with roots. New Phytol 118:477–483

    Article  Google Scholar 

  • Gantar M, Kerby NW, Rowell P (1993) Colonisation of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: III. The role of a hormogonia-promoting factor. New Phytol 124:505–513

    Article  CAS  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour C (1995a) Colonisation of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance in the plants. New Phytol 129:337–343

    Article  CAS  Google Scholar 

  • Gantar M, Rowell P, Kerby NW, Sutherland IW (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol Fertil Soils 19:41–48

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Env 30:1486–1498

    Article  CAS  Google Scholar 

  • Gorelova OA (2006) Communication of cyanobacteria. Microbiol 75:465–469

    Article  CAS  Google Scholar 

  • Hashem MA (2001) Problems and prospects of cyanobacterial biofertiliser for rice cultivation. Aust J Plant Physiol 28:881–888

    Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Berkely

    Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Phys Plant Mol Biol 47:655–684

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (1997) Interactive effects of salinity and macronutrient level on wheat II. Composition. J Plant Nutr 20:1169–1182

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of find sand grain. Carbohydr Polym 54:33–42

    Article  CAS  Google Scholar 

  • Husain S, von Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol 31:1115–1126

    Article  CAS  Google Scholar 

  • Islam S, Malik AI, Islam AKMR, Colmer TD (2007) Salt tolerance in a Hordeum vulgare - Triticum aestivum amphiploid, and its parents. J Exp Bot 58:1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Issa AA, Abd-Alla MH, Mahmoud A-LE (1994) Effect of biological treatments on growth and some metabolic activities of barley plants grown in saline soil. Microbiol Res 149:317–320

    Article  Google Scholar 

  • Karthikeyan N, Prassana R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prassana R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterisation and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khattak RA, Jarrell WM, Page AL (1989) Mechanism of native manganese release in salt-treated soils. Soil Sci Soc Am J 53:701–705

    Article  CAS  Google Scholar 

  • Logan BA, Adams WWI, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    Article  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agr Res 1:12–26

    Google Scholar 

  • Maas EV, Hoffman GJ, Asce M (1977) Crop salt tolerance- current assessment. J Irr Drain Div 103:115–134

    Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Malam Issa O, Defarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Mashali AM (1999) Land degradation with focus on salinization and its management in Africa. In: Nabhan H, Mashali AM, Mermut AR (eds) Integrated soil management for sustainable agriculture and food security in southern and east Africa. Food and Agriculture Organization of the United Nations, Rome, pp 17–47

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chorophyll fluorescence- a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Mazhar S, Hasnain S (2011) Screening of native plant growth promoting cyanobacteria and their impact on Triticum aestivum var. Uqab 2000 growth. Afr J Agric Res 6:3988–3993

    Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    Article  CAS  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2005) Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett 245:139–144

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Rasmussen U, Bergman B (2006) Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 55:382–390

    Article  PubMed  CAS  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fert Soils 15:68–72

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602

    Article  CAS  Google Scholar 

  • Pardo MT, Almendros G, Zancada MC, Lopez-Fando C (2010) Biofertilization of degraded South African soils with cyanobacteria affects organic matter content and quality. Arid Land Res Manag 24:328–343

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Pradhan S, Rai LC (2001) Biotechnological potential of Microcystis sp. in Cu, Zn, and Cd biosorption from single and multimetallic systems. BioMetals 14:67–74

    Article  PubMed  CAS  Google Scholar 

  • Rascio A, Russo M, Mazzucco L, Plattani C, Nicastro G, Di Fonzo N (2001) Enhanced osmotolerance of a wheat mutant selected for potassium accumulation. Plant Sci 160:441–448

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen U, Johansson C, Bergman B (1994) Symbiosis: plant-induced cell differentiation and protein synthesis in the Cyanobacterium. Mol Plant Microbe Interact 7:696–702

    Article  CAS  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Washington D. C

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2

  • Sayed HI (1985) Diversity of salt tolerance in a germplasm collection of wheat (Triticum spp.). Theor Appl Genet 69:651–657

    Article  Google Scholar 

  • Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal crop research. Photosynth 41:321–330

    Article  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • Sharma PK, Varma SK, Datta KS, Kumar B (1992) Salinity effects on some morpho-physiological water relations and mineral composition characteristics of two cultivars of wheat with varying salt resistance. Ann Biol 10:39–50

    Google Scholar 

  • Shaw RJ (1999) Soil salinity- electrical conductivity and chloride. In: Peverill KI, Sparrow LA, Reuter DJ (eds) Soil Analysis: an interpretation manual. CSIRO, Collingwood, pp 129–146

    Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK (1989) Copper uptake by free and immobilized cyanobacterium. FEMS Microbiol Lett 60:193–196

    Article  CAS  Google Scholar 

  • Sood A, Singh PK, Kumar A, Singh R, Prasanna R (2011) Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments. Biologia 66:104–110

    Article  CAS  Google Scholar 

  • Subhashini D, Kaushik BD (1981) Amelioration of sodic soils with blue-green algae. Aust J Soil Res 19:361–366

    Article  Google Scholar 

  • Svircev Z, Tamas I, Nenin P, Drobac A (1997) Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol 6:301–308

    Article  Google Scholar 

  • Tanji KK (1990) Nature and extent of agricultural salinity. In: Tanji KK (ed.) Agricultural salinity assessment and management, ASCE Manuals and reports on engineering practice No. 71, American society of civil engineers, New York, pp 1–17

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Vaishamayan A, Sinha RP, Hader D-P, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516

    Article  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 2:147–150

    Article  Google Scholar 

  • Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microbial Ecol 51:189–196

    Article  CAS  Google Scholar 

  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Meth. doi:10.1186/1746-4811-4-27

  • Yang Y, Xu S, Li A, Chen N (2007) NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. J Plant Physiol 164:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pacific Seeds and Agrigrain Limited for providing seeds of Triticum aestivum L. ‘EGA Gregory’. We thank Dr. Murray Badger and Dr. Britta Forster of the Australian National University for assistance with Pulse Amplitude Modulation Fluorometry. A scholarship for W.S.C. was provided by the Grains Research and Development Corporation, Australia. The other authors are funded by the Australian Research Council, the Australian Centre for Astrobiology and the Royal Botanic Gardens and Domain Trust, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelle M. Gehringer or Brett A. Neilan.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuddy, W.S., Summerell, B.A., Gehringer, M.M. et al. Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum aestivum L.) under salt stress. Plant Soil 370, 317–332 (2013). https://doi.org/10.1007/s11104-013-1607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1607-2

Keywords

Navigation