Skip to main content

Advertisement

Log in

Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Potato bacterial wilt (Ralstonia solanacearum) is a soil-borne disease that affects the potato plant (Solanum tuberosum) worldwide and causes serious economic losses in southern China. The objective of this study is to study the effect of bacterial antagonists and bio-organic fertilizers on potato bacterial wilt and rhizosphere soil microbial population.

Methods

In the present study, pot and field experiments were conducted to evaluate the LH23 (Bacillus amyloliquefaciens) and LH36 (Bacillus subtilis) strains and their derived bio-organic fertilizers (BIO23 and BIO36) as potential biocontrol agents against potato bacterial wilt.

Results

BIO23 and BIO36 decreased the incidence of bacterial wilt disease and increased potato yields. In pot experiments, the disease incidence of BIO23 and BIO36 was 8.9 % and 11.1 % respectively, much lower than the control (57.7 %). The biocontrol efficiency of BIO23 was 84.6 %, which was the most successful treatment and BIO36 was the second with a biocontrol efficiency of 80.8 %. The increased percentages of potato yields when compared with the control were 63.5 % (BIO23), 64.7 % (BIO36) 34.8 % (LH23), 33.6 % (LH36) and 20.7 % (OF). The counts of antagonists, bacteria and actinobacteria in the rhizosphere soil were significantly increased in BIO23 and BIO36 treatments, whereas the counts of R. solanacearum and fungi in the soil in the both treatments decreased. In field experiments, 70 days after treatment, the biocontrol efficacies of BIO23 and BIO36 treatments were 92.0 % and 84.0 %, and the yield increases of BIO23 and BIO36 treatments were 42.3 % and 28.8 %, respectively, when compared with the organic fertilizer treatment. In addition, the changes in the microbial populations were the same as those observed in the greenhouse experiment.

Conclusions

Potato bacterial wilt could be well controlled by the application bio-organic fertilizer containing a specific antagonist, mainly through the alternation of soil microbial community

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akila R, Rajendran L, Harish S, Saveetha K, Raguchander T, Samiyappan R (2011) Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol Control 57:175–183

    Article  Google Scholar 

  • Bailey K, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bark R (1981) Ecology of the fungus Fusarium: competition. In: Nelson PE, Tousson TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 245–249

    Google Scholar 

  • Bonanomi G, Chiurazzi M, Caporaso S, Del Sorbo G, Moschetti G, Felice S (2008) Soil solarization with biodegradable materials and its impact on soil microbial communities. Soil Biol Biochem 40:1989–1998

    Article  CAS  Google Scholar 

  • Borrero C, Trillas MI, Ordovás J, Tello JC, Avilés M (2004) Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology 94:1094–1101

    Google Scholar 

  • Borrero C, Ordovás J, Trillas MI, Avilés M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biology®. Soil Biol Biochem 38:1631–1637

    Google Scholar 

  • Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 56:365–374

    Article  Google Scholar 

  • Boulter JI, Boland G, Trevors J (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J Microbiol Biotechnol 16:115–134

    Article  CAS  Google Scholar 

  • Boulter JI, Trevors JT, Boland GJ (2002) Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World J Microbiol Biotechnol 18:661–671

    Article  CAS  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Google Scholar 

  • Cebolla V, Busto J, Ferrer A, Miguel A, Maroto V (2000) Methyl bromide alternatives on horticultural crops. Acta Horticult 532:237–242

    Google Scholar 

  • Céline J, Villeneuve F, Alabouvette C, Véronique E-H, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  Google Scholar 

  • Chen L, Yang X, Raza W, Luo J, Zhang F, Shen Q (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 102:3900–3910

    Article  PubMed  CAS  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Contreras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am J Potato Res 66:315–332

    Article  Google Scholar 

  • Dalal N, Dalal S, Golliwar V, Khobragade R (1999) Studies on grading and pre-packaging of some bacterial wilt resistant brinjal (Solanum melongena L.) varieties. J Soils Crops 9:223–226

    Google Scholar 

  • De Cal A, Pascual S, Larena I, Melgarejo P (1995) Biological control of Fusarium oxysporum f. sp. lycopersici. Plant Pathol 44:909–917

    Article  Google Scholar 

  • Desjardins AE, McCormick SP, Corsini DL (1995) Diversity of sesquiterpenes in 46 potato cultivars and breeding selections. J Agric Food Chem 43:2267–2272

    Article  CAS  Google Scholar 

  • Dommergues YR (1978) The plant–microorganism system. In: Dommergues YR, Krupa SV (eds) Interactions between nonpathogenic soil microorganisms and plants. Elsevier, Amsterdam, Netherlands, pp 1–37

  • El-Hassan S, Gowen S (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Fravel D, Deahl K, Stommel J (2005) Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol Control 34:165–169

    Article  CAS  Google Scholar 

  • French E (1994) Integrated control of bacterial wilt of potato. CIP Circ 20:8–11

    Google Scholar 

  • French E, Sequeira L (1970) Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology 60:506–512

    Article  Google Scholar 

  • French E, Gutarra L, Aley P, Elphinstone J (1995) Culture media for Pseudomonas solanacearum isolation, identification and maintenance. Fitopatol 30:126–130

    Google Scholar 

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management-organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Ghini R, Patrício FRA, Bettiol W, De Almeida IMG, Maia AHN (2007) Effect of sewage sludge on suppressiveness to soil-borne plant pathogens. Soil Biol Biochem 39:2797–2805

    Article  CAS  Google Scholar 

  • Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162

    Article  CAS  Google Scholar 

  • Gorissen A, van Overbeek LS, van Elsas JD (2004) Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil. Can J Microbiol 50:587–593

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Zhang N, Yong X, Yang X, Shen Q (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Zheng C, Mu Z (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Qu X, Feng L, Tang T, Tang Y, Liu K, Zheng P, Zhao Y, Bai Y, Cai M (1999) Expression of antibacterial peptide gene in transgenic potato confers resistance to bacterial wilt. Chin Agric Sci 15–22

  • Katayama K, Kimura S (1987) Ecology and protection of bacterial wilt of potato 2. Some control methods and their integration. Bull Nagasaki Agric For Exp Station 15:29–57

    Google Scholar 

  • Kempe J, Sequeira L (1983) Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubes with bacteria. Plant Dis 67:499–501

    Article  Google Scholar 

  • King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. Hortscience 43:1673–1676

    Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Li G, Jin L, Xie K, Qu D (2004) Advances in research on bacterial wilt of ginger in China. Chin Potato 18:350–354

    Google Scholar 

  • Liu M, Zhang M, Ji J, Yin F, Zhang Y, Tu Y, Ye Y (2005) Advances in research on bacterial wilt of ginger in China. Chin Agric Sci Bull 21:337–341

    CAS  Google Scholar 

  • Luo J, Ran W, Hu J, Yang X, Xu Y, Shen Q (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  CAS  Google Scholar 

  • Messiha NAS, Van Diepeningen A, Farag N, Abdallah S, Janse J, van Bruggen AHC (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Article  Google Scholar 

  • Michel VV, Mew T (1998) Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology 88:300–305

    Article  PubMed  CAS  Google Scholar 

  • Mishra K, Kumar A, Pandey K (2010) RAPD based genetic diversity among different isolates of Fusarium oxysporum f. sp. lycopersici and their comparative biocontrol. World J Microbiol Biotechnol 26:1079–1085

    Article  CAS  Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 44:77–84

    Article  Google Scholar 

  • Nishiyama M, Shiomi Y, Suzuki S, Marumoto T (1999) Suppression of growth of Ralstonia solanacearum, tomato bacterial wilt agent, on/in tomato seedlings in a suppressive soil in Japan. Soil Sci Plant Nutr 45:79–87

    Article  Google Scholar 

  • Park CS, Paulitz T, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Qiu M, Zhang R, Xue C, Zhang S, Li S, Zhang N, Shen Q (2012) Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils 1–10

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Raviv M, Reuveni R, Zaidman BZ (1998) Improved medium for organic transplants. Biol Agric Hortic 16:53–64

    Article  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123

    Google Scholar 

  • Suarez-Estrella F, Elorrieta MA, Vargas-Garcia MC, Lopez MJ, Moreno J (2001) Selective isolation of antagonist micro-organisms of Fusarium oxysporum f. sp. melonis. Biological Control of Fungal and Bacterial Plant Pathogens, International Organization for Biological Control (IOBC) West Palaeartic Regional Sector (WPRS). Bulletin 24:109–112

    Google Scholar 

  • Sullivan P (2001) Sustainable management of soil-borne plant diseases. ATTRA, USDA’s Rural Business Cooperative Service, https://www.attra.org

  • Tamietti G, Valentino D (2006) Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot 25:389–397

    Article  Google Scholar 

  • Tan H, Cao L, He Z, Su G, Lin B, Zhou S (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280

    Article  CAS  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilés M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Turner J, Backman P (1991) Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis 75:347–353

    Article  Google Scholar 

  • Vanitha S, Niranjana S, Mortensen C, Umesha S (2009) Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54:685–695

    Article  Google Scholar 

  • Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Xue Q, Chen Y, Li S, Chen L, Ding G, Guo D, Guo J (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258

    Article  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904

    PubMed  CAS  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Zhang L, Yang Q, Tosa Y, Nakayashiki H, Mayama S (2001) Involvement of gacA gene in the suppression of tomato bacterial wilt by Pseudomonas fluorescens FPT9601. J Gen Plant Pathol 67:134–143

    Article  CAS  Google Scholar 

  • Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44:1073–1080

    Article  Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2011) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the 111 project (B12009), and by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, C., Shen, Q., Zhang, R. et al. Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366, 453–466 (2013). https://doi.org/10.1007/s11104-012-1425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1425-y

Keywords

Navigation