Skip to main content

Advertisement

Log in

Biological nitrification inhibition (BNI) activity in sorghum and its characterization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The ability to suppress soil nitrification through the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI). Here, we aimed at the quantification and characterization of the BNI function in sorghum that includes inhibitor production, their chemical identity, functionality and factors regulating their release.

Methods

Sorghum was grown in solution culture and root exudate was collected using aerated NH4Cl solutions. A bioluminescence assay using recombinant Nitrosomonas europaea was employed to determine the BNI activity. Activity-guided chromatographic fractionation was used to isolate biological nitrification inhibitors (BNIs). The chemical structure was analyzed using NMR and mass spectrometry; pH-stat systems were deployed to analyze the role of rhizosphere pH on BNIs release.

Results

Sorghum roots released two categories of BNIs: hydrophilic- and hydrophobic-BNIs. The release rates for hydrophilic- and hydrophobic- BNIs ranged from 10 to 25 ATU g−1 root dwt. d−1. Addition of hydrophilic BNIs (10 ATU g−1 soil) significantly inhibited soil nitrification (40 % inhibition) during a 30-d incubation test. Two BNI compounds isolated are: sakuranetin (ED80 0.6 μM; isolated from hydrophilic-BNIs fraction) and sorgoleone (ED80 13.0 μM; isolated from hydrophobic-BNIs fraction), which inhibited Nitrosomonas by blocking AMO and HAO enzymatic pathways. The BNIs release required the presence of NH +4 in the root environment and the stimulatory effect of NH +4 lasted 24 h. Unlike the hydrophobic-BNIs, the release of hydrophilic-BNIs declined at a rhizosphere pH >5.0; nearly 80 % of hydrophilic-BNI release was suppressed at pH ≥7.0. The released hydrophilic-BNIs were functionally stable within a pH range of 5.0 to 9.0. Sakuranetin showed a stronger inhibitory activity (ED50 0.2 μM) than methyl 3-(4-hydroxyphenyl) propionate (MHPP) (ED50 100 μM) (isolated from hydrophilic-BNIs fraction) in the in vitro culture-bioassay, but the activity was non-functional and ineffective in the soil-assay.

Conclusions

There is an urgent need to identify sorghum genetic stocks with high potential to release functional-BNIs for suppressing nitrification and to improve nitrogen use efficiency in sorghum-based production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkinson P, Blakeman JP (1982) Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes Nigrum. New Phytol 92:63–74

    Article  CAS  Google Scholar 

  • Barbosa LCA, Ferreira ML, Demuner AJ, Alberto da Silva A, Pereira RC (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim Nova 24:751–755

    Article  CAS  Google Scholar 

  • Belser LW (1979) Population ecology of nitrifying bacteria. Annu Rev Microbiol 33:309–333

    Article  PubMed  CAS  Google Scholar 

  • Bock E, Koops HP, Harms H, Ahlers B (1991) The biochemistry of nitrifying organisms. In: Shivly JM, Barton LL (eds) Variations in autotrophic life. Academic, San Diego, pp 171–200

    Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  PubMed  CAS  Google Scholar 

  • Burford JR, Sahrawat KL (eds) (1989) Management of Vertisols for improved agricultural production: proceedings of an IBSRAM inaugural workshop, 18–22 February 1985, ICRISAT Center, Patancheru, India. ICRISAT, Patancheru 502 324, Andhra Pradesh, India, pp 278

  • Chang M, Netzly DH, Butler LG, Lynn DG (1986) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 108:7858–7860

    Article  PubMed  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization and production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  • Dayan FE, Howell J, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in Planta mechanism of action. J Exp Bot 60:2107–2117

    Article  PubMed  CAS  Google Scholar 

  • Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing AL, Duke SO (2010) Sorgoleone. Phytochemistry 71:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Einhellig FA, Souza IF (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J Chem Ecol 18:1–11

    Article  CAS  Google Scholar 

  • Erikson J, Schott D, Reverri T, Muhsin W, Ruttledge T (2001) GC-MS analysis of hydrophobic root exudates of sorghum and implication on the parasitic plant Striga asiatica. J Agric Food Chem 49:5537–5542

    Article  Google Scholar 

  • Fillery IRP (2007) Plant-based manipulation of nitrification in soil: a new approach to managing N loss? Plant Soil 294:1–4

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan S, Watanabe T, Pearse SJ, Ito O, Hossain ZAKM, Subbarao GV (2009) Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Soil Sci Plant Nutr 55:725–733

    Article  CAS  Google Scholar 

  • Goring CAI (1962a) Control of nitrification of ammonium fertilizers and urea by 2-chloro-6-(trichloromethyl)-pyridine. Soil Sci 93:211–218

    Article  CAS  Google Scholar 

  • Goring CAI (1962b) Control of nitrification by 2-chloro-6-(trichloromethyl)-pyridine. Soil Sci 93:431–439

    Article  Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Anton Leeuw 71:59–67

    Article  CAS  Google Scholar 

  • Hossain AKMZ, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum biolor). New Phytol 180:442–451

    Article  Google Scholar 

  • Hyman MR, Murton IB, Arp DJ (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes. Appl Environ Microbiol 54:3187–3190

    PubMed  CAS  Google Scholar 

  • Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807–3809

    Article  CAS  Google Scholar 

  • Litchfield MD (1967) The automated analysis of nitrite and nitrate in blood. Analyst (Lond) 92:132–136

    Article  CAS  Google Scholar 

  • Logan MSP, Hooper AB (1995) Suicide inactivation of hydroxylamine oxidoreductase of Nitrosomonas europaea by organohydrazines. Biochemistry 34:9257–9264

    Article  PubMed  CAS  Google Scholar 

  • McCarty GW (1999) Modes of action of nitrification inhibitors. Biol Fertil Soils 29:1–9

    Article  CAS  Google Scholar 

  • McTavish H, Arciero DM, Hooper AB (1995) Interaction with membranes of cytochrome c554 from Nitrosomonas europaea. Arch Biochem Biophys 324:53–58

    Article  PubMed  CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1996) Nitrous oxide emissions from agricultural fields: assessment, measurement, and mitigation. Plant Soil 181:95–108

    Article  CAS  Google Scholar 

  • Netzly DH, Butler LG (1986) Roots of sorghum exudates hydrophobic droplets containing biologically active components. Crop Sci 26:775–778

    Article  CAS  Google Scholar 

  • Netzly DH, Riopel JL, Ejeta G, Butler LG (1988) Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudates of sorghum (Sorghum bicolor). Weed Sci 36:441–446

    CAS  Google Scholar 

  • Norton JM, Alzerreca JJ, Suwa Y, Klotz MG (2002) Diversity of ammonia monooxygenase operon in autotrophic ammonia oxidizing bacteria. Arch Microbiol 177:139–149

    Article  PubMed  CAS  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Rottenberg H, Hashimoto K (1986) Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Biochem 25:1747–1755

    Article  CAS  Google Scholar 

  • Sahrawat KL (1996) Nitrification inhibitors, with emphasis on natural products, and the persistence of fertilizer nitrogen in the soil. In: Ahmad N (ed) Nitrogen economy in tropical soils. Kluwer Academic Publishers, Dordrecht, pp 379–388

    Chapter  Google Scholar 

  • Sahrawat KL, Keeney DR (1985) Perspectives for research on development of nitrification inhibitors. Commun Soil Sci Plant Anal 16:517–524

    Article  CAS  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci (USA) 106:203–208

    Article  CAS  Google Scholar 

  • Slangen J, Kerkhoff P (1984) Nitrification inhibitors in agriculture and horticulture: a literature review. Fert Res 5:1–76

    Article  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006a) Scope and strategies for regulation of nitrification in agricultural systems – Challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006b) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112

    Article  CAS  Google Scholar 

  • Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007a) NH +4 triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257

    Article  CAS  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007b) Biological nitrification inhibition (BNI) – Is it a widespread phenomenon? Plant Soil 294:5–18

    Article  CAS  Google Scholar 

  • Subbarao GV, Ban T, Masahiro K, Ito O, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Hossain AKMZ, Tsujimoto H, Berry WL (2007c) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M, Yoshida M, Kawano N, Berry WL (2008) Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil 313:89–99

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009a) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Nat Acad Sci (USA) 106:17302–17307

    Article  CAS  Google Scholar 

  • Subbarao GV, Kishii M, Nakahara K, Ishikawa T, Ban T, Tsujimoto H, George TS, Berry WL, Hash CT, Ito O (2009b) Biological nitrification inhibition (BNI) – Is there potential for genetic interventions in the Triticeae? Breed Sci 59:529–545

    Article  CAS  Google Scholar 

  • Subbarao GV, Sahrawat KL, Nakahara K, Ishikawa T, Kishii M, Rao IM, Hash CT, George TS, Srinivasa rao P, Nardi P, Bonnett D, Berry W, Suenaga K, Lata JC (2012) Biological nitrification inhibition (BNI) – A novel strategy to regulate nitrification in agricultural systems. Adv Agron 114:249–302

    Article  CAS  Google Scholar 

  • Ward BB, Courtney KJ, Langerheim JH (1997) Inhibition of Nitrosomonas europaea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole-cell studies. J Chem Ecol 23:2583–2598

    Article  CAS  Google Scholar 

  • Zhu Y, Zeng H, Shen Q, Ishikawa T, Subbarao GV (2012) Interplay among NH +4 uptake, rhizosphere pH and plasma membrane H+-ATPase determine the release of BNIs in sorghum roots – possible mechanisms and underlying hypothesis. Plant Soil. doi:10.1007/s11104-012-1151-5

Download references

Acknowledgments

We acknowledge the technical assistance of Ms. N. Kudo and Ms. Notazawa in the conduct of various experiments described in this manuscript. We acknowledge the cooperation and funding support from Natural Science Foundation of China (NSFC 31172035) to one of the co-authors Yiyong Zhu. We thank Dr. Wade Berry, Univ. of California, LA, USA who read an earlier version of this manuscript and offered suggestions to help with the interpretation of results presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Subbarao.

Additional information

Responsible Editor: Ute Skiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbarao, G.V., Nakahara, K., Ishikawa, T. et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366, 243–259 (2013). https://doi.org/10.1007/s11104-012-1419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1419-9

Keywords

Navigation