Skip to main content

Advertisement

Log in

Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Zinc deficiency has been recognized as an important factor affecting both human health and crop production. Rice (Oryza sativa) is relevant to both concerns, as it is susceptible to soil Zn deficiency and is a staple food for some of the Zn-deficient human population. Improving the processes by which Zn moves from the soil into the plant and eventually into the edible part of the grain has the potential to mitigate problems associated with Zn deficiency in crops and humans. This review article focuses on soil- and plant-related processes affecting Zn chemistry in rice-grown soils and Zn uptake and transport in a rice plant.

Scope

This review covers advances in soil chemistry regarding the reasons for inconsistent Zn deficiency in rice soils and the limitations of soil test methods for predicting Zn response for rice. We then review advances in plant physiology related to root Zn uptake and internal Zn distribution mechanisms in rice and explore interactions between specific root processes and the soil chemistry of particular environments. We aim to provide an overview of the soil science research for plant scientists and vice versa, in order to promote and facilitate future interdisciplinary collaborations.

Conclusions

Priority research areas to fill in knowledge gaps are: 1) improving our ability to predict Zn deficiency in rice soils, 2) understanding the relationship between Zn-deficiency tolerance mechanisms and grain Zn accumulation, 3) exploring the effectiveness of root Zn uptake mechanisms in contrasting soil environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AE:

agronomic efficiency

AMF:

arbuscular mycorrhizal fungi

BRE:

biofortification recovery efficiency

DMA:

deoxymugineic acid

DTPA:

diethyelenetriaminepentaacetic acid

EDTA:

ethylenediaminetetraacetic acid

GxE:

genotype by environment

IE:

internal efficiency

LMWOA:

low-molecular-weight organic acids

NA:

nicotianamine

OM:

organic matter

PFP:

partial factor productivity

RE:

recovery efficiency

ROL:

radial oxygen loss

ROS:

reactive oxygen species

YSL:

yellow stripe-like transporter

ZIP:

zinc- and iron-regulated transporter-like proteins

References

  • Acuna TLB, Lafitte HR, Wade LJ (2008) Genotype x environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments. Field Crop Res 108:117–125. doi:10.1016/j.fcr.2008.04.003

    Article  Google Scholar 

  • Ahmad AR, Nye PH (1990) Coupled diffusion and oxidation of ferrous iron in soils. I Kinetics of oxygenation of ferrous iron in soil suspension J Soil Sci 41:395–409. doi:10.1111/j.1365-2389.1990.tb00075.x

    CAS  Google Scholar 

  • Ali AJ, Xu JL, Ismail AM, Fu BY, Vijaykumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li ZK (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res 97:66–76

    Article  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. International Zinc Assocation; International Fertilizer Industry Association, Brussels; Paris

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  PubMed  CAS  Google Scholar 

  • Amer F, Rezk AI, Khalid HM (1980) Fertilizer zinc efficiency in flooded calcareous soils. Soil Sci Soc Am J 44:1025–1030

    Article  CAS  Google Scholar 

  • Anderegg G, Ripperger H (1989) Correlation between metal-complex formation and biological-activity of nicotianamine analogs. J Chem Soc Chem Commun:647–650. doi:10.1039/c39890000647

  • Ando T, Yoshida S, Nishiyama S (1983) Nature of oxidizing power of rice roots. Plant Soil 72:57–71. doi:10.1111/j.1399-3054.1967.tb08379.x

    Article  CAS  Google Scholar 

  • Armstrong W (1967) The oxidising activity of roots in waterlogged soils. Physiol Plant 20:920–926. doi:10.1111/j.1399-3054.1967.tb08379.x

    Article  CAS  Google Scholar 

  • Arnold T, Kirk GJD, Wissuwa M, Frei M, Zhao FJ, Mason TFD, Weiss DJ (2010) Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell Environ 33:370–381. doi:10.1111/j.1365-3040.2009.02085.x

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402. doi:10.1074/jbc.M604133200

    Article  PubMed  CAS  Google Scholar 

  • Beebout SEJ, Castillo OB, Jacob JDC, Laureles EV, Rubianes FHC, Buresh RJ (2009) Managing paddy soil zinc to improve micronutrient nutrition for rice (Oryza sativa) plants and humans. In: Suh JS, Kim KH, Yoo JH, Kim JK, Paik MK, Kim WI (eds) 9th International Conference of the East and Southeast Asia Federation of Soil Science Societies (ESAFS). Korean Society of Soil Science and Fertilizer, Seoul, Korea, pp 292–299

    Google Scholar 

  • Begg CBM, Kirk GJD, Mackenzie AF, Neue HU (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477

    Article  CAS  Google Scholar 

  • Behera SK, Singh MV, Singh KN, Todwal S (2011) Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma 162:242–250. doi:10.1016/j.geoderma.2011.01.016

    Article  CAS  Google Scholar 

  • Benes I, Schreiber K, Ripperger H, Kircheiss A (1983) On the normalizing factor for the tomato mutant chloronerva.13. Metal-complex formation by nicotianamine, a possible phytosiderophore. Experientia 39:261–262

    Article  CAS  Google Scholar 

  • Bhattacharya I, Bandyopadhyay S, Varadachari C, Ghosh K (2007) Development of a novel slow-releasing iron-manganese fertilizer compound. Indian Eng Chem Res 46:2870–2876

    Article  CAS  Google Scholar 

  • Black RE (2001) Zinc deficiency, immune function, and morbidity and mortality from infectious disease among children in developing countries. Food Nutr Bull 22:155–162

    Google Scholar 

  • Bones J, Thomas KV, Paull B (2006) Improved method for the determination of zinc pyrithione in environmental water samples incorporating on-line extraction and preconcentration coupled with liquid chromatography atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1132:157–164. doi:10.1016/j.chroma.2006.07.068

    Article  PubMed  CAS  Google Scholar 

  • Bostick BC, Hansel CM, La Force MJ, Fendorf S (2001) Seasonal fluctuations in zinc speciation within a contaminated wetland. Environ Sci Technol 35:3823–3829. doi:10.1021/es010549d

    Article  PubMed  CAS  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40

    PubMed  Google Scholar 

  • Bouman BAM, Barker R, Humphreys E, Tuong TP, Atlin GN, Bennett J, Dawe D, Dittert K, Dobermann A, Facon T, Fujimoto N, Gupta RK, Haefele SM, Hosen Y, Ismail AM, Johnson D, Johnson S, Khan S, Shan L, Masih I, Matsuno Y, Pandey S, Peng S, Thiyagarajan TM, Wassmann R (2007) Rice: Feeding the billion. In: Molden D (ed) Water for food, water for life: A comprehensive assessment of water management in agriculture. Earthscan, London, pp 515–549

    Google Scholar 

  • Brennan EW, Lindsay WL (1996) The role of pyrite in controlling metal ion activities in highly reduced soils. Geochim Cosmochim Acta 60:3609–3618. doi:10.1016/0016-7037(96)00162-7

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. doi:10.1111/j.1469-8137.2007.01996.x

    Article  PubMed  CAS  Google Scholar 

  • Brown KH, Peerson JM, Rivera J, Allen LH (2002) Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am J Clin Nutr 75:1062–1071

    PubMed  CAS  Google Scholar 

  • Brown KH, Hambidge KM, Ranum P (2010) Zinc fortification of cereal flours: Current recommendations and research needs. Food Nutr Bull 31:S62–S74

    PubMed  Google Scholar 

  • Butler OT, Cairns WRL, Cook JM, Davidson CM (2012) Atomic spectrometry update. Environmental analysis J Anal At Spectrom 27:187–221. doi:10.1039/c1ja90057a

    Article  CAS  Google Scholar 

  • Bylund D, Norstrom SH, Essen SA, Lundstrom US (2007) Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J Chromatogr A 1176:89–93. doi:10.1016/j.chroma.2007.10.064

    Article  PubMed  CAS  Google Scholar 

  • Cairns JE, Audebert A, Townend J, Price AH, Mullins CE (2004) Effect of soil mechanical impedance on root growth of two rice varieties under field drought stress. Plant Soil 267:309–318. doi:10.1007/s11104-005-0134-1

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Tansley review no. 111—Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x

  • Cakmak I (2007) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17. doi:10.1007/s11104-007-9466-3

    Article  CAS  Google Scholar 

  • Cakmak I (2010) HarvestZinc: Use of zinc-containing fertilizers for enriching cereal grains with zinc and improving yield. 4th progress report. Sabanci University, Istanbul

  • Cakmak I, Marschner H (1988) Zinc-dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots. Physiol Plant 73:182–186

    Article  CAS  Google Scholar 

  • Cakmak I, Gulut K, Marschner H, Graham R (1994) Effect of zinc and iron deficiency on phytosiderophore release in wheat genotypes differing in zinc efficiency. J Plant Nutr 17:1–17. doi:10.1080/01904169409364706

    Article  CAS  Google Scholar 

  • Cakmak I, Torun B, Erenoglu B, Ozturk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A (1998) Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100:349–357

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. doi:10.1094/cchem-87-1-0010

    Article  CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140. doi:10.1639/0044-7447(2002)031[0132:anuean]2.0.co;2

    PubMed  Google Scholar 

  • Castro RU (1977) Zinc deficiency in rice: A review of research at the International Rice Research Institute. IRRI Research Paper Series 9. International Rice Research Institute (IRRI), Manila

  • Cayton MTC, Reyes ED, Neue HU (1985) Effect of zinc fertilization on the mineral-nutrition of rices differing in tolerance to zinc-deficiency. Plant Soil 87:319–327

    Article  CAS  Google Scholar 

  • Chapman AL, Cellier KM (1986) Residual values of zinc sulfate and acidifying (elemental) sulfur for rice on the alkaline Cununurra soils of the Ord Irrigation Area, Western Australia. Aust J Exp Agric 26:591–599

    Article  CAS  Google Scholar 

  • Chaudhry FM, Alam SM, Rashid A, Latif A (1977) Mechanism of differential susceptibility of 2 rice varieties to zinc-deficiency. Plant Soil 46:637–642. doi:10.1007/bf00015923

    Article  CAS  Google Scholar 

  • Chen RF (2006) Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress. Ann Bot 98:389–395. doi:10.1093/aob/mcl110

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Dixon JB, Turner FT (1980a) Iron coatings on rice roots: Mineralogy and quantity influencing factors. Soil Sci Soc Am J 44:635–639

    Article  CAS  Google Scholar 

  • Chen CC, Dixon JB, Turner FT (1980b) Iron coatings on rice roots: Morphology and models of development. Soil Sci Soc Am J 44:1113–1119

    Article  CAS  Google Scholar 

  • Chen WR, Yang X, He ZL, Feng Y, Hu FH (2008) Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol Plant 132:89–101. doi:10.1111/j.1399-3054.2007.00992.x

    Article  PubMed  CAS  Google Scholar 

  • Chen WR, He ZL, Yang XE, Feng Y (2009) Zinc efficiency is correlated with root morphology, ultrastructure, and antioxidative enzymes in rice. J Plant Nutr 32:287–305. doi:10.1080/01904160802608627

    Article  CAS  Google Scholar 

  • Cheng T, de Schamphelaere K, Lofts S, Janssen C, Allen HE (2005) Measurement and computation of zinc binding to natural dissolved organic matter in european surface waters. Anal Chim Acta 542:230–239. doi:10.1016/j.aca.2005.03.053

    Article  CAS  Google Scholar 

  • Christensen JB, Christensen TH (2000) The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res 34:3743–3754. doi:10.1016/s0043-1354(00)00127-5

    Article  CAS  Google Scholar 

  • Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309. doi:10.1093/aob/mcf114

    Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436. doi:10.1093/jexbot/49.325.1431

    CAS  Google Scholar 

  • Contin M, Mondini C, Leita L, de Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164–175. doi:10.1016/j.geoderma.2007.03.017

    Article  CAS  Google Scholar 

  • Cook H, Oparka KJ (1983) Movement of fluorescein into isolated caryopses of wheat and barley. Plant Cell Environ 6:239–242. doi:10.1111/j.1365-3040.1983.tb01899.x

    Google Scholar 

  • Crowder AA, Macfie SM (1986) Seasonal deposition of ferric hydroxide plaque on roots of wetland plants. Can J Bot-Rev Can Bot 64:2120–2124

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: A review. J Environ Qual 34:1707–1745. doi:10.2134/jeq2004.0014

    Article  PubMed  CAS  Google Scholar 

  • Dassonville F, Renault P (2002) Interactions between microbial processes and geochemical transformations under anaerobic conditions: A review. Agronomie 22:51–68. doi:10.1051/agro:2001001

    Article  Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Zinc deficiency. Rice: Nutrient disorders and nutrient management. Potash & Phosphate Institute (PPI); Potash & Phosphate Institute of Canada (PPIC); International Rice Research Institute (IRRI), pp 84–89

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat. New Phytol 189:438–448. doi:10.1111/j.1469-8137.2010.03488.x

    Article  PubMed  CAS  Google Scholar 

  • Ernstberger H, Davison W, Zhang H, Tye A, Young S (2002) Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ Sci Technol 36:349–354. doi:10.1021/es010917d

    Article  PubMed  CAS  Google Scholar 

  • Fageria NK, Breseghello F (2004) Nutritional diagnostic in upland rice production in some municipalities of state of Mato Grosso, Brazil. J Plant Nutr 27:15–28. doi:10.1081/pln-120027544

    Article  CAS  Google Scholar 

  • Fageria NK, Slaton NA, Baligar VC (2003) Nutrient management for improving lowland rice productivity and sustainability. Adv Agron 80:63–152. doi:10.1016/s0065-2113(03)80003-2

    Article  CAS  Google Scholar 

  • Fang Y, Wang L, Xin Z, Zhao L, An X, Hu Q (2008) Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. J Agric Food Chem 56:2079–2084

    Article  PubMed  CAS  Google Scholar 

  • Forno DA, Asher CJ, Yoshida S (1975) Zinc deficiency in rice. II Studies on two varieties differing in susceptibility to zinc deficiency. Plant Soil 42:551–563

    CAS  Google Scholar 

  • Frei M, Wang YX, Ismail AM, Wissuwa M (2010) Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil. Funct Plant Biol 37:74–84. doi:10.1071/fp09079

    Article  CAS  Google Scholar 

  • Frenzel W, Jimoh M, Miro M (2005) Hyphenated microanalytical systems for on-line and in-situ fractionation and leaching kinetics of heavy metals in solid environmental samples. Chem Anal 50:279–299

    CAS  Google Scholar 

  • Gao X, Zou C, Zhang F, van der Zee SEATM, Hoffland E (2005) Tolerance to zinc deficiency in rice correlates with zinc uptake and translocation. Plant Soil 278:253–261. doi:10.1007/s11104-005-8674-y

    Google Scholar 

  • Gao X, Zou C, Fan X, Zhang F, Hoffland E (2006) From flooded to aerobic conditions in rice cultivation: Consequences for zinc uptake. Plant Soil 280:41–47. doi:10.1007/s11104-004-7652-0

    Article  CAS  Google Scholar 

  • Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291. doi:10.1007/s11104-006-9160-x

    Article  CAS  Google Scholar 

  • Gao X, Zhang F, Hoffland E (2009) Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency. J Environ Qual 38:2315–2321. doi:10.2134/jeq2009.0043

    Article  PubMed  CAS  Google Scholar 

  • Garcia G, Peñas JM, Manteca JI (2008) Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. Environ Res 106:333–339. doi:10.1016/j.envres.2007.04.008

    Article  PubMed  CAS  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66. doi:10.1007/s11104-008-9704-3

    Article  CAS  Google Scholar 

  • Gibson RS, Anderson VP (2009) A review of interventions based on dietary diversification or modification strategies with the potential to enhance intakes of total and absorbable zinc. Food Nutr Bull 30:S108–S143

    PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  PubMed  CAS  Google Scholar 

  • Graham RD, Rengel Z (1993) Genotypic variation in zinc uptake and utilization by plants. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 107–118

    Chapter  Google Scholar 

  • Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv Agron 115:1–40

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101. doi:Piis0378-4290(02)00031-x 10.1016/s0378-4290(02)00031-x

    Article  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A 95:7220–7224. doi:10.1073/pnas.95.12.7220

    Article  PubMed  CAS  Google Scholar 

  • Gumma MK, Nelson A, Thenkabail PS, Singh AN (2011) Mapping rice areas of South Asia using MODIS multitemporal data. J Appl Remote Sens 5. doi:05354710.1117/1.3619838

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350. doi:10.1046/j.1469-8137.2003.00826.x

    Article  CAS  Google Scholar 

  • Haider BA, Bhutta ZA (2009) The effect of therapeutic zinc supplementation among young children with selected infections: A review of the evidence. Food Nutr Bull 30:S41–S59

    PubMed  Google Scholar 

  • Hajiboland R, Salehi SY (2006) Characterization of Zn efficiency in Iranian rice genotypes. I Uptake efficiency Gen Appl Plant Physiol 32:191–206

    Google Scholar 

  • Hajiboland R, Yang XE, Romheld V (2003) Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye. Plant Soil 250:349–357. doi:10.1023/A:1022862125282

    Article  CAS  Google Scholar 

  • Hajiboland R, Yang X, Romheld V, Neumann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Exp Bot 54:163–173. doi:10.1016/j.envexpbot.2004.07.001

    Article  CAS  Google Scholar 

  • Hajiboland R, Afiasgharzad N, Barzeghar R (2009) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environ 55:93–100

    CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. doi:10.1111/j.1469-8137.2007.02051.x

    Article  PubMed  CAS  Google Scholar 

  • Hess SY, King JC (2009) Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr Bull 30:S60–S78

    PubMed  Google Scholar 

  • Hesterberg D, Duff MC, Dixon JB, Vepraskas MJ (2011) X-ray microspectroscopy and chemical reactions in soil microsites. J Environ Qual 40:667–678. doi:10.2134/jeq2010.0140

    Article  PubMed  CAS  Google Scholar 

  • Hettiarachchi GM, Lombi E, McLaughlin MJ, Chittleborough DJ, Johnston C (2010) Chemical behavior of fluid and granular Mn and Zn fertilisers in alkaline soils. Australian J Soil Res 48:238–247. doi:10.1071/sr09051

    Article  CAS  Google Scholar 

  • Hoffland E, Wei CZ, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162. doi:10.1007/s11104-005-3937-1

    Article  CAS  Google Scholar 

  • Howeler RH (1973) Iron induced oranging disease of rice in relation to physiochemical change in a flooded oxisol. Soil Sci Soc Am Proc 37:898–903

    Article  CAS  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385. doi:10.1016/j.chemosphere.2007.11.03I

    Article  PubMed  CAS  Google Scholar 

  • Huddle JM, Gibson RS, Cullinan TR (1998) Is zinc a limiting nutrient in the diets of rural pregnant Malawian women? Br J Nutr 79:257–265. doi:10.1079/bjn19980043

    Article  PubMed  CAS  Google Scholar 

  • Hunter KS, Wang YF, van Cappellen P (1998) Kinetic modeling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry. J Hydrol 209:53–80. doi:10.1016/s0022-1694(98)00157-7

    Article  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381. doi:10.1046/j.1365-313X.2003.01878.x

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479. doi:10.1074/jbc.M806042200

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214. doi:10.1093/jxb/eri317

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Ogo Y, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Synthesis of nicotianamine and deoxymugineic acid is regulated by OsIRO2 in Zn excess rice plants. Soil Sci Plant Nutr 54:417–423. doi:10.1111/j.1747-0765.2008.00259.x

    Article  CAS  Google Scholar 

  • Ishimaru Y, Bashir K, Nishizawa NK (2011) Zn uptake and translocation in rice plants. Rice 4:21–27. doi:10.1007/s12284-011-9061-3

    Article  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  PubMed  CAS  Google Scholar 

  • James WD, Raghvan T, Gentry TJ, Shan G, Loeppert RH (2008) Arsenic speciation: HPLC followed by ICP-MS or INAA. J Radioanal Nucl Chem 278:267–270. doi:10.1007/s10967-008-0402-7

    Article  CAS  Google Scholar 

  • Janssens K, de Nolf W, van der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker FE (2010) Recent trends in quantitative aspects of microscopic x-ray fluorescence analysis. Trac-Trends Anal Chem 29:464–478. doi:10.1016/j.trac.2010.03.003

    Article  CAS  Google Scholar 

  • Jeyabal A, Kuppuswamy G (1998) Effect of seed soaking on seedling vigour, growth and yield of rice. J Agron Crop Sci-Z Acker Pflanzenbau 180:181–190. doi:10.1111/j.1439-037X.1998.tb00388.x

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, Lingna J, van Keulen H, Ming Z, Stomph TJ (2007) Uptake and distribution of root-applied or foliar-applied 65-Zn after flowering in aerobic rice. Ann Appl Biol 150:383–391. doi:10.1111/j.1744-7348.2007.00138.x

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, van Keulen H, Zhao M, Jin LN, Stomph TJ (2008a) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147. doi:10.1111/j.1744-7348.2008.00243.x

    Article  CAS  Google Scholar 

  • Jiang W, Struik PC, Zhao M, Van Keulen H, Fan TQ, Stomph TJ (2008b) Indices to screen for grain yield and zinc mass concentrations in aerobic rice at different soil-Zn levels. NJAS-Wagening J Life Sci 55:181–197

    Article  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234. doi:10.2136/sssaj2005.0012

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476: 24471–24411. doi:10.1371/journal.pone.0024476.g001

  • Johnson SE, Lauren JG, Welch RM, Duxbury JM (2005) A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agric 41:427–448. doi:10.1017/s0014479705002851

    Article  CAS  Google Scholar 

  • Johnson-Beebout SE, Lauren JG, Duxbury JM (2009) Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Commun Soil Sci Plant Anal 40:1842–1861. doi:10.1080/00103620902896738

    Article  CAS  Google Scholar 

  • Kalayci M, Torun B, Eker S, Aydin M, Ozturk L, Cakmak I (1999) Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Res 63:87–98. doi:10.1016/s0378-4290(99)00028-3

    Article  Google Scholar 

  • Karak T, Das DK, Maiti D (2006) Yield and zinc uptake in rice (Oryza sativa) as influenced by sources and times of zinc application. Indian J Agric Sci 76:346–348

    Google Scholar 

  • Katyal JC, Ponnamperuma FN (1974) Zinc deficiency: a widespread nutritional disorder of rice in Agusan del Norte. J Philipp Agric 58:79–89

    Google Scholar 

  • Kausar MA, Chaudhry FM, Rashid A, Latif A, Alam SM (1976) Micronutrient availability to cereals from calcareous soils.1. Comparative Zn and Cu deficiency and their mutual interaction in rice and wheat. Plant Soil 45:397–410. doi:10.1007/bf00011702

    Article  CAS  Google Scholar 

  • Khatun UHF, Malek MA, Black RE, Sarkar NR, Wahed MA, Fuchs G, Roy SK (2001) A randomized controlled clinical trial of zinc, vitamin A or both in undernourished children with persistent diarrhea in Bangladesh. Acta Paediatr 90:376–380

    Article  PubMed  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Kabiri S, Shariatmadari H, Sharifnabi B, Schulin R (2010a) Zinc nutrition effect on the tolerance of wheat genotypes to Fusarium root-rot disease in a solution culture experiment. Soil Sci Plant Nutr 56:234–243. doi:10.1111/j.1747-0765.2009.00441.x

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2010b) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture: a review. Agron Sustain Dev 30:83–107. doi:10.1051/agro/2009017

    Article  CAS  Google Scholar 

  • Kirk GJD (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kirk GJD, Santos EE, Santos MB (1999) Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytol 142:185–200

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kolbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010.03.009

    Article  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424. doi:10.1111/j.1365-313X.2004.02146.x

    Article  PubMed  CAS  Google Scholar 

  • Krishnan S, Dayanandan P (2003) Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.). J Biosci 28:455–469. doi:10.1007/bf02705120

    Article  PubMed  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9. doi:10.1094/cchem-87-1-0001

    Article  CAS  Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517. doi:10.1007/s11103-010-9637-0

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim Y-S, Jeon US, Kim Y-K, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873. doi:10.1111/j.1467-7652.2011.00606.x

    Article  PubMed  CAS  Google Scholar 

  • Levan MA, Riha SJ (1986) The precipitation of black oxide coatings on flooded conifer roots of low internal porosity. Plant Soil 95:33–42. doi:10.1007/bf02378850

    Article  CAS  Google Scholar 

  • Lombnaes P, Chang AC, Singh BR (2008) Organic ligand, competing cation, and pH effects on dissolution of zinc in soils. Pedosphere 18:92–101. doi:10.1016/s1002-0160(07)60107-6

    Article  CAS  Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179. doi:10.1111/j.1469-8137.2009.02956.x

    Article  PubMed  CAS  Google Scholar 

  • Maclean JL, Dawe D, Hardy B, Hettel GP (eds) (2002) Rice almanac. International Rice Research Institute (IRRI), Los Baños, 253

    Google Scholar 

  • Maftoun M, Haghighat Nia H, Karimian N, Ronaghi A (2003) Evaluation of chemical extractants for predicting lowland rice response to zinc in highly calcareous soils. Commun Soil Sci Plant Anal 34:1269–1280. doi:10.1081/css-120020443

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM (1977) Critical stability constants, vol 3. Plenum Press, New York

    Google Scholar 

  • Martell AE, Smith RM (1982) Critical stability constants, vol 5. Plenum Press, New York

    Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166. doi:10.1007/s12284-009-9031-1

    Article  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McDonald GK, Genc Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55. doi:10.1007/s11104-008-9555-y

    Article  CAS  Google Scholar 

  • Meenakshi JV, Johnson N, Manyong VM, de Groote H, Javelosa J, Yanggen D, Naher F, Gonzalez C, Gracia J, Meng E (2007) How cost-effective is biofortification in combating micronutrient malnutrition? An ex-ante assessment. HarvestPlus Working Paper 2. International Food Policy Research Institute (IFPRI), Washington, D.C.

  • Mendelssohn IA, Kleiss BA, Wakeley JS (1995) Factors controlling the formation of oxidized root channels—a review. Wetlands 15:37–46

    Article  Google Scholar 

  • Meunier N, O’Connor JM, Maiani G, Cashman KD, Secker DL, Ferry M, Roussel AM, Coudray C (2005) Importance of zinc in the elderly: the ZENITH study. Eur J Clin Nutr 59(Suppl 2):S1–S4. doi:10.1038/sj.ejcn.1602286

    Article  PubMed  CAS  Google Scholar 

  • Michalski R, Jablonska M, Szopa S, Lyko A (2011) Application of ion chromatography with ICP-MS or MS detection to the determination of selected halides and metal/metalloids species. Crit Rev Anal Chem 41:133–150. doi:10.1080/10408347.2011.559438

    Article  CAS  Google Scholar 

  • Mikac I, Fiket Z, Terzic S, Baresic J, Mikac N, Ahel M (2011) Chemical indicators of anthropogenic impacts in sediments of the pristine Karst lakes. Chemosphere 84:1140–1149. doi:10.1016/j.chemosphere.2011.04.027

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Ise K, Hayakawa M, Kamei S, Takagi SI (1989) Stabilities of metal-complexes of mugineic acids and their specific affinities for iron(III). Chem Lett 2137-2140. doi:10.1246/cl.1989.2137

  • Naik SK, Das DK (2008) Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutr Cycl Agroecosyst 81:219–227. doi:10.1007/s10705-007-9158-7

    Article  CAS  Google Scholar 

  • Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol Biochem 45:277–286. doi:10.1016/j.plaphy.2007.03.021

    Article  PubMed  CAS  Google Scholar 

  • Neue HU, Quijano CC, Senadhira D, Setter T (1998) Strategies for dealing with micronutrient disorders and salinity in lowland rice systems. Field Crops Res 56:139–155

    Article  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H-J, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152. doi:10.1111/j.1399-3054.2006.00737.x

    Article  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. doi:10.1016/j.tplants.2008.06.005

    Article  PubMed  CAS  Google Scholar 

  • Patrick WH, Jugsujinda A (1992) Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci Soc Am J 56:1071–1073

    Article  CAS  Google Scholar 

  • Pearson JN, Rengel Z, Jenner CF, Graham RD (1998) Dynamics of zinc and manganese movement in developing wheat grains. Aust J Plant Physiol 25:139–144

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67. doi:10.1007/s11104-007-9417-z

    Article  CAS  Google Scholar 

  • Peng SB, Buresh RJ, Huang JL, Yang JC, Zou YB, Zhong XH, Wang GH, Zhang FS (2006) Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res 96:37–47. doi:10.1016/j.fcr.2005.05.004

    Article  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1977a) Behavior of minor elements in paddy soils. IRRI Research Paper Series 8. International Rice Research Institute (IRRI), Manila

  • Ponnamperuma FN (1977b) Screening rice for tolerance to mineral stresses. IRRI Research Paper Series 6. International Rice Research Institute (IRRI), Manila

  • Prasad B, Sharma MM, Sinha SK (2002) Evaluating zinc fertilizer requirement on typic haplaquent in the rice-wheat cropping system. J Sustain Agric 19:39–49. doi:10.1300/J064v19n03_05

    Article  Google Scholar 

  • Ptashnyk M, Roose T, Jones DL, Kirk GJD (2011) Enhanced zinc uptake by rice through phytosiderophore secretion: A modelling study. 34:2038–2046. doi:10.1111/j.1365-3040.2011.02401.x

  • Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus etunicatum L) on mobilization of zinc in wetland rice (Oryza sativa L.). Biol Fertil Soils 33:323–327. doi:10.1007/s003740000330

    Article  CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Article  Google Scholar 

  • Ramesh SA (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134. doi:10.1104/pp.103.026815

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Fox RL (1992) Evaluating internal zinc requirements of grain crops by seed analysis. 84:469–474

  • Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review. J Plant Nutr 27:959–975. doi:10.1081/pln-120037530

    Article  CAS  Google Scholar 

  • Rashid A, Kausar MA, Hussain F, Tahir M (2000) Managing zinc deficiency in transplanted flooded rice by nursery enrichment. Trop Agric 77:156–162

    Google Scholar 

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32:1163–1186. doi:10.1081/css-100104107

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1995a) Importance of seed Zn content for wheat growth on Zn-deficient soil. 1. Vegetative growth. Plant Soil 173:259–266

    Article  CAS  Google Scholar 

  • Rengel Z, Graham RD (1995b) Importance of seed Zn content for wheat growth on Zn-deficient soil. 2. Grain-yield. Plant Soil 173:267–274

    Article  CAS  Google Scholar 

  • Reuter D, Edwards D, Wilhelm N (1997) Temperate and tropical crops. In: Reuter D, Robinson J, Dutkiewicz C (eds) Plant analysis: an interpretation manual, 2nd edn. CSIRO, Collingwood, pp 83–284

    Google Scholar 

  • Rose MT, Rose TJ, Pariasca-Tanaka J, Widodo WM (2011) Revisiting the role of organic acids in the bicarbonate tolerance of zinc-efficient rice genotypes. Funct Plant Biol 38:493–504. doi:10.1071/fp11008

    CAS  Google Scholar 

  • Rose MT, Rose TJ, Pariasca-Tanaka J, Yoshihashi T, Neuweger H, Goesmann A, Frei M, Wissuwa M (2012) Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta Online First. doi:10.1007/s00425-012-1648-4

  • Rozane DE, Prado RD, Romualdo LM, Simoes RR (2008) Response in rice cv. BRS-Soberana seedlings to addition of zinc to seeds. Cienc Agrotecnol 32:847–854

    Article  CAS  Google Scholar 

  • Saikh H, Chandra PK, Varadachari C, Ghosh K (2005) Crop response to a novel bio-release Zn fertilizer in diverse agro-climatic zones of India. Trop Agric 82:263–268

    Google Scholar 

  • Sakal R, Singh BP, Singh AP (1982) Determination of critical limit of zinc in soil and plant for predicting response of rice to zinc application in calcareous soils. Plant Soil 66:129–132

    Article  CAS  Google Scholar 

  • Sakal R, Singh AP, Singh BP, Sinia RB (1984) Assessment of some extractants for available zinc in relation to response of rice to applied zinc in sub-Himalayan hill and forest soils. Plant Soil 79:417–428. doi:10.1007/bf02184332

    Article  CAS  Google Scholar 

  • Sandstead HH (1989) Zinc-deficiency—growth stunting and hypogonadism—a citation classic commentary on human zinc-deficiency, endocrine manifestations and response to treatment. Current Contents/Life Sci 16:16–17

    Google Scholar 

  • Savithri P, Perumal R, Nagarajan R (1999) Soil and crop management technologies for enhancing rice production under micronutrient constraints. Nutr Cycl Agroecosyst 53:83–92

    Article  Google Scholar 

  • Schulin R, Johnson A, Frossard E (2010) Trace element-deficient soils. In: Hooda PS (ed) Trace elements in soils. Wiley-Blackwell Publishing, Chichester, pp 175–197

    Chapter  Google Scholar 

  • Sedberry JE, Schilling PE, Wilson FE, Peterson FJ (1978) Diagnosis and correction of zinc problems in rice production. LA Agric Exp Stn Bull 708:3–14

    Google Scholar 

  • Sedberry JE, Peterson FE, Wilson FE, Mengel DB, Maika SD, Schilling PE, Brupbacher RH (1980) Influence of soil reaction and zinc applications on yields and zinc contents of rice plants. LA Agric Exp Stn Bull 724:3–16

    Google Scholar 

  • Senadhira D (ed) (1994) Rice and problem soils in South and Southeast Asia. IRRI discussion paper series No. 4. International Rice Research Institute (IRRI), Manila, 186

  • Shi ZQ, di Toro DM, Allen HE, Sparks DL (2008) A WHAM-based kinetics model for Zn adsorption and desorption to soils. Environ Sci Technol 42:5630–5636. doi:10.1021/es800454y

    Article  PubMed  CAS  Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99. doi:10.1093/aob/mcq221

    Article  PubMed  CAS  Google Scholar 

  • Shivay YS, Kumar D, Prasad R (2008a) Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutr Cycl Agroecosyst 81:229–243. doi:10.1007/s10705-007-9159-6

    Article  CAS  Google Scholar 

  • Shivay YS, Kumar D, Prasad R, Ahlawat IPS (2008b) Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea. Nutr Cycl Agroecosyst 80:181–188. doi:10.1007/s10705-007-9131-5

    Article  CAS  Google Scholar 

  • Shivay YS, Prasad R, Rahal A (2010) Genotypic variation for productivity, zinc utilization efficiencies, and kernel quality in aromatic rices under low available zinc conditions. J Plant Nutr 33:1835–1848. doi:10.1080/01904167.2010.503832

    Article  CAS  Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils: a global study. FAO/Finnish International Development Agency, Rome

    Google Scholar 

  • Sillanpaa M (1990) Micronutrient assessment at the country level: an international study. FAO/Finnish International Development Agency, Rome

    Google Scholar 

  • Sims JT, Johnson GV (1991) Micronutrient soil tests. Micronutrients in agriculture. Soil Science Society of America, Madison, pp 427–476

    Google Scholar 

  • Singh K (1984) Determination of critical limit of zinc in rice soils in India for predicting response of rice to zinc application. Field Crop Res 9:143–149. doi:10.1016/0378-4290(84)90020-0

    Article  Google Scholar 

  • Singh MV, Abrol IP (1986) Transformation and movement of zinc in an alkali soil and their influence on the yield and uptake of zinc by rice and wheat crops. Plant Soil 94:445–449. doi:10.1007/bf02374338

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide-Biol Chem 20:289–297. doi:10.1016/j.niox.2009.02.004

    Article  CAS  Google Scholar 

  • Slaton NA, Wilson CE, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    Article  CAS  Google Scholar 

  • Slaton NA, Wilson CE Jr, Norman RJ, Gbur EE Jr (2002) Development of a critical Mehlich 3 soil zinc concentration for rice in Arkansas. Commun Soil Sci Plant Anal 33:2759–2770. doi:10.1081/css-120014478

    Article  CAS  Google Scholar 

  • Slaton NA, Gbur EE, Wilson CE, Norman RJ (2005a) Rice response to granular zinc sources varying in water-soluble zinc. Soil Sci Soc Am J 69:443–452

    Article  CAS  Google Scholar 

  • Slaton NA, Norman RJ, Wilson CE (2005b) Effect of zinc source and application time on zinc uptake and grain yield of flood-irrigated rice. Agron J 97:272–278

    Article  CAS  Google Scholar 

  • Smith RM, Martell AE (1989) Critical stability constants, vol. 6. Plenum Press

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41:505–514

    Article  Google Scholar 

  • Solaiman MZ, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191:1–12. doi:10.1023/a:1004238028617

    Article  CAS  Google Scholar 

  • Solaiman MZ, Hirata H (1998) Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions. Biol Fertil Soils 27:92–96. doi:10.1007/s003740050405

    Article  Google Scholar 

  • Somenahally AC, Hollister EB, Loeppert RH, Yan WG, Gentry TJ (2011) Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol Biochem 43:1220–1228. doi:10.1016/j.soilbio.2011.02.011

    Article  CAS  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002. doi:10.1007/s00425-009-1000-9

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16. doi:10.1007/s10725-010-9526-1

    Article  CAS  Google Scholar 

  • Srivastava PC, Ghosh D, Singh VP (1999) Evaluation of different zinc sources for lowland rice production. Biol Fertil Soils 30:168–172. doi:10.1007/s003740050604

    Article  CAS  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154. doi:10.1007/s11104-009-0228-2

    Article  CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2005) Analyzing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: A handbook focusing on iron, zinc and vitamin A. HarvestPlus Technical Monographs 4. International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington, D.C. and Cali, Columbia

  • Stein AJ, Nestel P, Meenakshi J, Qaim M, Sachdev H, Bhutta ZA (2007) Plant breeding to control zinc deficiency in India: How cost-effective is biofortification? Public Health Nutr 10:492–501. doi:10.1017/s1368980007223857

    Article  PubMed  Google Scholar 

  • Stein AJ, Qaim M, Nestel P (2009) Zinc deficiency and DALYs in India: Impact assessment and economic analyses. In: Preedy V, Watson RR (eds) Handbook of disease burdens and quality of life measures. Springer, Heidelberg

    Google Scholar 

  • Stomph TJ, Jiang W, Struik PC (2009) Zinc biofortification of cereals: rice differs from wheat and barley. Trends Plant Sci 14:123–124. doi:10.1016/j.tplants.2009.01.001

    Article  CAS  Google Scholar 

  • Stomph TJ, Choi EY, Stangoulis JC (2011) Temporal dynamics in wheat grain zinc distribution: is sink limitation the key? Ann Bot 107:927–937. doi:10.1093/aob/mcr040

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97. doi:10.1111/j.1365-313X.2006.02853.x

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617. doi:10.1007/s11103-008-9292-x

    Article  PubMed  CAS  Google Scholar 

  • Svete P, Milacic R, Mitrovic B, Pihlar B (2001) Potential for the speciation of Zn using fast protein liquid chromatography (FPLC) and convective interaction media (CIM) fast monolithic chromatography with FAAS and electrospray (ES)-MS-MS detection. Analyst 126:1346–1354. doi:10.1039/b101867l

    Article  PubMed  CAS  Google Scholar 

  • Sylvia DM, Williams SE (eds) (1992) Vesicular-arbuscular myrcorrhizae and environmental stresses. American Society of Agronomy (ASA), Madison, pp. 101–124

  • Takagi S (1976) Naturally occuring iron-chelating compounds in oat and rice root washings. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22:423–433

    Article  CAS  Google Scholar 

  • Takahashi M, Nozoye T, Kitajima N, Fukuda N, Hokura A, Terada Y, Nakai I, Ishimaru Y, Kobayashi T, Nakanishi H, Nishizawa NK (2009) In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and x-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant Soil 325:39–51. doi:10.1007/s11104-009-0045-7

    Article  CAS  Google Scholar 

  • Takkar PN, Sidhu BS (1979) Kinetics of zinc transformation in submerged alkaline soils in the rice growing tracts of Punjab. J Agric Sci 93:441–447

    Article  CAS  Google Scholar 

  • Tandy S, Mundus S, Yngvesson J, Bang TC, Lombi E, Schjoerring JK, Husted S (2011) The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 346:167–180. doi:10.1007/s11104-011-0806-y

    Article  CAS  Google Scholar 

  • Trivedi P, Dyer JA, Sparks DL, Pandya K (2004) Mechanistic and thermodynamic interpretations of zinc sorption onto ferrihydrite. J Colloid Interface Sci 270:77–85. doi:10.1016/s0021-9797(03)00586-1

    Article  PubMed  CAS  Google Scholar 

  • van Breemen N, Castro RU (1980) Zinc deficiency in wetland rice along a toposequence of hydromorphic soils in the Philippines. II. Cropping experiment. Plant Soil 57:215–221

    Article  Google Scholar 

  • Van Laer L, Degryse F, Leynen K, Smolders E (2010) Mobilization of Zn upon waterlogging riparian spodosols is related to reductive dissolution of Fe minerals. Eur J Soil Sci 61:1014–1024. doi:10.1111/j.1365-2389.2010.01308.x

    Article  CAS  Google Scholar 

  • Vespa M, Lanson M, Manceau A (2010) Natural attenuation of zinc pollution in smelter-affected soil. Environ Sci Technol 44:7814–7820. doi:10.1021/es101567u

    Article  PubMed  CAS  Google Scholar 

  • von Wiren N, Marschner H, Romheld V (1996) Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Phsiol 111:1119–1125

    Google Scholar 

  • Walker CLF, Ezzati M, Black RE (2009) Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr 63:591–597. doi:10.1038/ejcn.2008.9

    Article  Google Scholar 

  • Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer-simulated evaluation of possible mechanisms for sequestering metal-ion activity in plant vacuoles. 2. Zinc. Plant Physiol 99:621–626. doi:10.1104/pp.99.2.621

    Article  PubMed  CAS  Google Scholar 

  • Wang RM, Chen CC, Yang XE, Zhang YX (2009) Growth responses to varying zinc activities in rice genotypes differing in Zn efficiency and Zn density. J Plant Nutr 32:681–693. doi:10.1080/01904160902734950

    Article  CAS  Google Scholar 

  • Wang KM, Wu JG, Li G, Zhang DP, Yang ZW, Shi CH (2011) Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. J Cereal Sci 54:116–121. doi:10.1016/j.jcs.2011.03.002

    Article  CAS  Google Scholar 

  • Weber FA (2009) Speciation and mobility of metal contaminants in floodplain soils: Role of biogenic copper(0) and metal sulfide colloids. Doctor of Sciences Dissertation, ETH ZURICH

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crop Res 60:11–26

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. doi:10.1111/j.1469-8137.2008.02738.x

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Frontiers Plant Sci 2:1–11. doi:10.3389/fpls.2011.00080

    Google Scholar 

  • Widodo BMR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol 186:400–414. doi:10.1111/j.1469-8137.2009.03177.x

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741. doi:10.1104/pp.106.085225

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2007) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48. doi:10.1007/s11104-007-9368-4

    Article  CAS  Google Scholar 

  • Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773. doi:10.1021/jf100017e

    Article  PubMed  CAS  Google Scholar 

  • Xiang HF, Tang HA, Ying QH (1995) Transformation and distribution of forms of zinc in acid, neutral and calcareous soils of China. Geoderma 66:121–135. doi:10.1016/0016-7061(94)00067-k

    Article  CAS  Google Scholar 

  • Xiao XM, Boles S, Frolking S, Li CS, Babu JY, Salas W, Moore B (2006) Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ 100:95–113. doi:10.1016/j.rse.2005.10.004

    Article  Google Scholar 

  • Yang X, Römheld V, Marschner H (1993) Effect of bicarbonate and root-zone temperature on uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. Plant Soil 155/156:441–444. doi:10.1007/bf00025078

    Article  Google Scholar 

  • Yang X, Römheld V, Marschner H (1994) Effect of bicarbonate on root-growth and accumulation of organic-acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant Soil 164:1–7. doi:10.1007/bf00010104

    Article  CAS  Google Scholar 

  • Yang X, Hajiboland R, Römheld V (2003) Bicarbonate had greater effects than high pH on inhibiting root growth of zinc-inefficient rice genotype. J Plant Nutr 26:399–415

    Article  CAS  Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287. doi:10.1007/s11033-007-9177-0

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz K, Saltali K, Guzel EU, Dikici H (2010) Zinc(II) sorption characteristics of soils in predominant smectite, illite and kaolinite clay minerals. Asian J Chem 22:1487–1494

    CAS  Google Scholar 

  • Yoshida S, Ahn JS, Forno DA (1973) Ocurrence, diagnosis, and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 19:83–93

    Article  CAS  Google Scholar 

  • Zahedifar M, Karimian N, Yasrebi J (2010) Zinc desorption of calcareous soils as influenced by applied zinc and phosphorus and described by eight kinetic models. Commun Soil Sci Plant Anal 41:897–907. doi:10.1080/00103621003592408

    Article  CAS  Google Scholar 

  • Zee SY (1972) Vascular tissue and transfer cell distribution in the rice spikelet. Aust J Biol Sci 25:411–414

    Google Scholar 

  • Zee SY, O’Brien TP (1970) A special type of tracheary element associated with ‘xylem discontinuity’ in the floral axis of wheat. Aust J Biol Sci 23:783–791

    Google Scholar 

  • Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115. doi:10.1016/s0065-2113(08)00202-2

    Article  CAS  Google Scholar 

  • Zhang X, Zhang F, Mao D (1998) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant Soil 202:33–39

    Article  CAS  Google Scholar 

  • Zhao K, Selim HM (2010) Adsorption-desorption kinetics of Zn in soils: influence of phosphate. Soil Sci 175:145–153. doi:10.1097/SS.0b013e3181dd51a0

    Article  CAS  Google Scholar 

  • Zhou XB, Shi WM, Zhang LH (2007) Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture. Plant Soil 290:17–28. doi:10.1007/s11104-006-9072-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for the post-doctoral fellowship of S.M. Impa from the Swiss Agency for Development and Cooperation (SDC) through its Research Fellow Partnership Programme for Agriculture, Forestry, and Natural Resources, managed by the North-South Centre of the Swiss Federal Institute of Technology (ETH), Zurich. We also acknowledge helpful comments for improving the manuscript from Krishna Jagadish, Jason Beebout, Roland Buresh, Amelia Henry, and Bill Hardy, all of whom are our colleagues at the International Rice Research Institute, from Rainer Schulin of ETH, and from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Johnson-Beebout.

Additional information

Responsible Editor: Ellis Hoffland.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Online Resource 1

Fertilizer use efficiency indices for other Zn sources (in comparison with zinc sulfate) applied to soil for mitigating Zn deficiency in rice. Grain yield and plant Zn uptake data were used from the reference cited to calculate fertilizer use efficiencies for this review, as defined in the text. (PDF 22.9 kb)

Online Resource 2

Fertilizer use efficiency indices for foliar Zn application for mitigating Zn deficiency in rice. Grain yield and plant Zn uptake data are from the reference cited, and fertilizer use efficiencies were calculated for this review, as defined in the text. Insufficient data were available to calculate REZn or IEZn for any of these experiments. (PDF 43.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Impa, S.M., Johnson-Beebout, S.E. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil 361, 3–41 (2012). https://doi.org/10.1007/s11104-012-1315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1315-3

Keywords

Navigation