Skip to main content

Advertisement

Log in

Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai–Tibetan Plateau

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau.

Methods

Field investigation was carried out along the two transects with a total of 1,875 km in length and 200 km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10 cm from 0 to 40 cm.

Results

Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0–40 cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15 % was explained by MAP, pH and silt content and 4.63 % was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40 % of variation of soil δ13C.

Conclusions

It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accoe F, Beockx P, Van Cleemput O, Hofman G, Hui X, Bin H, Guanxion C (2002) Characterization of soil organic matter fractions from grassland and cultivated soils via C content and 13δC signature. Rapid Commun Mass Spectrom 16:2157–2164

    Article  PubMed  CAS  Google Scholar 

  • Andreux F, Cerri C, Vose PB, Vitorello VA (1990) Potential of stable isotope, 15N and 13C methods for determining input and turnover in soils. In: Harrison AF (ed) Nutrient cycling in terrestrial ecosystems, field methods, application and interpretation. Elsevier Applied Science, London, pp 259–275

    Google Scholar 

  • Balesdent J, Mariotti A (1988) Measurement of soil organic matter turnover using 13C natural abundance. In: Boutton TW, Yama-saki S (eds) Mass spectrometry of soil. Marcel Dekker, New York, pp 83–111

    Google Scholar 

  • Barrios E, Buresh RJ, Sprent JI (1996) Organic matter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol Biochem 28:185–193

    Article  CAS  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Article  Google Scholar 

  • Bird MI, Lloyd JJ, Santruchkova H, Veenendaal E (2001) Global soil organic carbon. In: Schulze ED et al (eds) Global biogeochemical cycles in the climate system. Academic, New York, pp 185–199

    Chapter  Google Scholar 

  • Bird MI, Santruckova H, Lloyd J, Lawson E (2002a) The isotopic composition of soil organic carbon on a north-south transect in western Canada. Eur J Soil Sci 53(3):393–403

    Article  CAS  Google Scholar 

  • Bird MI, Santruckova H, Arneth A, Grigoriev S, Gleixner G, Kalaschnikov YN, Lloyd J, Schulze ED (2002b) Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus B 54(5):631–641

    Article  Google Scholar 

  • Bird MI, Veenendaal EM, Lloyd JJ (2004) Soil carbon inventories and delta C-13 along a moisture gradient in Botswana. Glob Change Biol 10(3):342–349

    Article  Google Scholar 

  • Briones MJI, Ostle NJ, Garnett MH (2006) Invertebrates increase the sensitivity of non-labile soil carbon to climate change. Soil Biol Biochem 39:816–81

    Article  Google Scholar 

  • Buchmann N, Kao WY, Ehleringer J (1997) Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110(1):109–119

    Article  Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • Connin SL, Feng X, Virginia RA (2001) Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol Biochem 33:41–51

    Article  CAS  Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Change Biol 15(8):2003–2019

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10(2):412–422

    Article  Google Scholar 

  • Fan JW, Zhong HP, Harris W, Yu GR, Wang SQ, Hu ZM, Yue YZ (2008) Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim Chang 86(3–4):375–396

    Article  CAS  Google Scholar 

  • Feng XH (2002) A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochem Cy 16(4):1119. doi:10.1029/2002GB001867

    Article  Google Scholar 

  • Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE (2008) Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res 113(G3):G03009

    Article  Google Scholar 

  • Francey RJ, Farquhar GD (1982) An explanation of 13C/12C variation in tree rings. Nature 297:28–31

    Article  CAS  Google Scholar 

  • Glaser B (2005) Compound-specific stable-isotope (δ13C) analysis in soil science. J Plant Nutr Soil Sci 168:633–648

    Article  CAS  Google Scholar 

  • Helfrich M, Ludwig B, Buurman P, Flessa H (2006) Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 136:331–341

    Article  CAS  Google Scholar 

  • ISSCAS (1978) Institute of Soil Science, Chinese Academy of Sciences, physical and chemical analysis methods of soils. China Shanghai Science Technology Press, Shanghai, pp 7–59

    Google Scholar 

  • Kato T, Tang Y, Gu S, Cui X, Hirota M, Du M, Li Y, Zhao X, Oikawa T (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, China. Agr Forest Meteorol 124:121–134

    Article  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2010) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Change Biol 17:1097–1107

    Article  Google Scholar 

  • Ladd JN, Foster RC, Skjemstad JO (1993) Soil structure—carbon and nitrogen-metabolism. Geoderma 56(1–4):401–434

    Article  CAS  Google Scholar 

  • Liao JD et al (2006a) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N. Soil Biol Biochem 38:3197–3210

    Article  CAS  Google Scholar 

  • Liao JD et al (2006b) Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol Biochem 38:3184–3196

    Article  CAS  Google Scholar 

  • Llorente M, Glaser B, Turrión MB (2010) Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions. Eur J Forest Res 129:1143–1153

    Article  CAS  Google Scholar 

  • Llorente M, Turrión MB (2010) Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur J Forest Res 129:73–81

    Article  CAS  Google Scholar 

  • Lu HY, Wu NQ, Gu ZY, Guo ZT, Wang L, Wu HB, Wang G, Zhou LP, Han JM, Liu TS (2004) Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 70(2):273–297

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Ni J (2000) A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Moun Res Dev 20(1):80–89

    Article  Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50(2):205–218

    Article  Google Scholar 

  • Peterson CM, Bhatti JS, Flanagan LB, Norris C (2006) Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian boreal forest transect case study. Clim Chang 74:223–251

    Article  Google Scholar 

  • Rovira P, Vallejo VR (2003) Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: a density fraction approach. Soil Biol Biochem 35:245–261

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R, Baldocchi DD (2003) Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time. Global Biogeochem Cycles 17:1061–107

    Article  Google Scholar 

  • Schjønning P, Thomsen IK, Moberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils—I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89(3–4):177–198

    Article  Google Scholar 

  • Sevink J, Obale-Ebanga F, Meijer HAJ (2005) Land-use related organic matter dynamics in North Cameroon soils assessed by 13C analysis of soil organic matter fractions. Eur J Soil Sci 56:103–111

    Article  CAS  Google Scholar 

  • Shi PL, Zhang XZ, Zhong ZM, Ouyang H (2006) Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan Plateau. Agr Forest Meteorol 137(3–4):220–233

    Article  Google Scholar 

  • Silim SN, Guy RD, Patterson TB, Livingston NJ (2001) Plasticity in water use efficiency of Picea sitchensis, P. glauca and their natural hybrids. Oecologia 128:317–325

    Article  Google Scholar 

  • Sollins P, Kramer M, Swanston C, Lajtha K, Filley T, Aufdenkampe A, Wagai R, Bowden R (2009) Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96(1–3):209–231

    Article  CAS  Google Scholar 

  • Song MH, Duan DY, Chen H, Hu QW, Zhang F, Xu XL, Tian YQ, Ouyang H, Peng CH (2008) Leaf d13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography 31:499–508

    Article  Google Scholar 

  • Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37–47

    Article  CAS  Google Scholar 

  • Su YZ, Zhao HL, Zhang TH (2002) Influencing mechanism of several shrubs and subshrubs on soil fertility in Horqin Sandy Land. Chin J Appl Ecol 13(7):802–806 (In Chinese)

    Google Scholar 

  • Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121–1130

    Article  CAS  Google Scholar 

  • Thomsen IK, Schjonning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils—II. Microbial activity as influenced by soil water regimes. Geoderma 89(3–4):199–218

    Article  Google Scholar 

  • Wang G, Cheng G, Shen Y (2001) Research on ecological environmental changes in the source Regions of Yangtze–Yellow Rivers and their integrated protection. Lanzhou University Press, Lanzhou

    Google Scholar 

  • Wang L, Lv H, Wu N, Wu H, Liu D (2003) Altitudinal trends of stable carbon isotope composition for Poeceae in Qinghai-Xizang plateau. Quaternary Sciences 23(5):273–280 (In Chinese)

    CAS  Google Scholar 

  • Wang L, Lu HY, Wu NQ, Chu D, Han JS, Wu YH, Wu HB, Gu ZY (2004) C4 plants in high elevation Qinghai Tibetan Plateau. Science Bulletin 49(13):1290–1293 (In Chinese)

    Google Scholar 

  • Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127:476–486

    Article  Google Scholar 

  • Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon-isotope dynamics during grass decomposition and soil organic-matter formation. Ecology 76(5):1383–1392

    Article  Google Scholar 

  • Wick AF, Ingram LJ, Stahl PD (2009) Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes. Soil Biol Biochem 41:201–209

    Article  CAS  Google Scholar 

  • Wu S, Yin Y, Zheng D, Yang Q (2005) Climate changes in the Tibetan Plateau during the last three decades. Acta Geogr Sinica 60(1):3–11

    Google Scholar 

  • Wynn JG, Bird MI, Vellen L, Grand-Clement E, Carter J, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochem Cy 20, GB1007. doi:10.1029/2005GB002576.

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Change Biol 14:1592–1599

    Article  Google Scholar 

  • Yang YH, Fang JY, Guo DL, Ji CJ, Ma WH (2010) Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeosciences Discussions 7:1–24

    Article  CAS  Google Scholar 

  • Yu GR, He HL, Liu XA (2004) Atlas for spatialized information of terrestrial ecosystem in China-volume of climatological elements. China Meteorological Press, Beijing (In Chinese)

    Google Scholar 

  • Zhang YQ, Tang YH, Jiang J, Yang YH (2007) Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China Series D: Earth Sciences 50(1):113–120

    Article  CAS  Google Scholar 

  • Zheng D (1996) The system of physico-geographical regions of the Qinghai-Xizang Plateau. Science in China (Series D) 26(4):336–341

    Google Scholar 

  • Zhou YC, Fan JW, Zhang WY, Harris W, Zhong HP, Hu ZM, Song LL (2011) Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China. Alp Botany doi:10.1007/s00035-011-0093-5

  • Zou XY, Li S, Zhang CL, Dong GR, Dong YX, Yan P (2002) Desertification and control plan in the Tibet Autonomous Region of China. J Arid Environ 51(2):183–198

    Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for the constructive comments on an early version of the manuscript. This research is supported by the State Key Basic Research Development Project (Grant No. 2010CB833503), CarboEast Asia: Capacity building among China Flux, Japan Flux, and Ko Flux to cope with climate change protocols by synthesizing measurement, theory, and modeling in quantifying and understanding of carbon fluxes and storages in East Asia (Grant NO. 31061140359), the Cooperation Project of MOST (Grant NO. 2010DFA22480), and Key Projects of Chinese Academy of Sciences (Grant No. KZCX2-YW-QN301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqiang Wang.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Fan, J., Song, M. et al. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai–Tibetan Plateau. Plant Soil 363, 243–255 (2013). https://doi.org/10.1007/s11104-012-1304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1304-6

Keywords

Navigation