Plant and Soil

, Volume 359, Issue 1–2, pp 363–374 | Cite as

Higher relative performance at low soil nitrogen and moisture predicts field distribution of nitrogen-fixing plants

  • Adrian Monks
  • Ellen Cieraad
  • Larry Burrows
  • Susan Walker
Regular Article


Background and Aims

Symbiotic associations between vascular plants and nitrogen-fixing bacteria are expected to be costly except when N availability is low. We tested the prediction that in low-N soils in dry climates, plants with nitrogen-fixing symbioses (N-fixing species) have higher growth rates, and occur relatively more frequently, than non-fixing species,


In a pot experiment, we measured the growth and survival of 6 N-fixing and 8 non-fixing species across nitrogen and moisture gradients. Using plot survey data from the South Island, New Zealand, we then modelled the relative occurrence of N-fixing species using derived measures of temperature, soil N and moisture.


Non-fixing species had higher relative growth rates than N-fixing species except when both total N and soil moisture were low. Low soil moisture increased the root:shoot ratio in N-fixing species more than twice that observed in non-fixing species. Soil moisture had a strong effect on mortality, which was slightly lower for N-fixing species. Survey data showed that a higher proportion of N-fixing species were present at cool, dry sites with low levels of soil N.


In temperate climates, with geologically young landscapes, the influences of soil N and water on N availability are key factors determining the relative success of N-fixing and non-fixing species.


Fabaceae Nitrogen fixation Nutrient availability Phosphorus Relative growth rate Spatial modelling 



This paper was funded by the New Zealand Foundation for Research, Science and Technology. We thank Chris Berg for helping with the maintenance of the experiment; Peter Keller and Lester Davey for provision of seeds and seedlings; Guy Forrester for statistical advice; David Purcell and Stuart Oliver for nursery advice; Jagath Ekanayake for help with soil physical measurements; Ian Lynn, Allan Hewitt and Ian Dickie for discussions and advice on soil and plant–soil micro-organism interactions; and Peter Bellingham, Joe Craine, Bill Lee, Duane Peltzer and anonymous reviewers for helpful discussions and comments that greatly improved the manuscript. We thank the many people who provided data, and also acknowledge the use of data drawn from the National Vegetation Survey Database (NVS).


  1. Adams MA, Simon J, Pfautsch S (2010) Woody legumes: a (re)view from the South. Tree Physiol 30:1072–1082PubMedCrossRefGoogle Scholar
  2. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45CrossRefGoogle Scholar
  3. Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. In New Zealand Soil Bureau Scientific Report 80, pp 1–103Google Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York, pp 1–488Google Scholar
  5. Craine JM (2009) Resource strategies of wild plants. Princeton University Press, Princeton, pp 1–331Google Scholar
  6. Drake DC (2011) Invasive legumes fix N2 at high rates in riparian areas of an N-saturated, agricultural catchment. J Ecol 99:515–523Google Scholar
  7. Dunningham A, Brownlie R, Firth J (2000) Classification accuracy assessment of NZLCDB1. Forest Research, RotoruaGoogle Scholar
  8. Eisele KA, Schimel DS, Kapustka LA, Parton WJ (1989) Effects of available P and N:P rations on non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79:471–474CrossRefGoogle Scholar
  9. Finzi AC, Rodgers VL (2009) Bottom-up rather than top-down processes regulate the abundance and activity of nitrogen fixing plants in two Connecticut old-field ecosystems. Biogeochemistry 95:309–321CrossRefGoogle Scholar
  10. Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117:9–18CrossRefGoogle Scholar
  11. Gradwell MW, Birrell KS (1979) Methods for physical analysis of soils. In New Zealand Soil Bureau Scientific Report 10°CGoogle Scholar
  12. Hewitt AE (1993) New Zealand soil classification. Manaaki Whenua Press, LincolnGoogle Scholar
  13. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293Google Scholar
  14. Houlton BZ, Wang Y, Vitousek PM, Field CB (2008) A unifying framework for nitrogen fixation in the terrestrial biosphere. Nature 454:327–331PubMedCrossRefGoogle Scholar
  15. Kassas M (1999) Rescuing drylands: a project for the world. Futures 31:949–958CrossRefGoogle Scholar
  16. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  17. Leathwick JR, Morgan F, Wilson G, Rutledge D, McLeod M, Johnston K (2002) Land environments of new zealand: technical guide. Ministry for the Environment, Wellington, pp 1–237Google Scholar
  18. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379PubMedCrossRefGoogle Scholar
  19. Liengen T (1999) Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high artic area, Spitsbergen. Can J Microbiol 45:573–581CrossRefGoogle Scholar
  20. Liu Y, Wu L, Baddeley JA, Watson CA (2011) Models of biological nitrogen fixation of legumes. A review. Agron Sustain Dev 31:155–172CrossRefGoogle Scholar
  21. McGlone MS, Richardson SJ, Jordan GJ (2010) Comparative biogeography of New Zealand trees: species richness, heigth, leaf traits and range sizes. N Z J Ecol 34:137–151Google Scholar
  22. McLaren RG, Cameron KC (1996) Soil science - sustainable production and environmental protection. Oxford University Press, MelbourneGoogle Scholar
  23. Menge DNL, DeNoyer JL, Lichstein JW (2010) Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests. PLoS ONE 5:e12056PubMedCrossRefGoogle Scholar
  24. Menge DNL, Levin SA, Hedin LO (2008) Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc Natl Acad Sci U S A 105:1573–1578PubMedCrossRefGoogle Scholar
  25. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294PubMedCrossRefGoogle Scholar
  26. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lon Ser-A 193:120–145CrossRefGoogle Scholar
  27. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  28. Ravi Sangakkara U, Hartwig UA, Nösberger J (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184:123–130CrossRefGoogle Scholar
  29. Reed SC, Cleveland CC, Townsend AR (2007) Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–592CrossRefGoogle Scholar
  30. Sierra J (1997) Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biol Biochem 29:1557–1563CrossRefGoogle Scholar
  31. Smith VH (1992) Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems. Biogeochemistry 18:19–35CrossRefGoogle Scholar
  32. Stanford G, Epstein E (1974) Nitrogen mineralization-water relations in soils. Soil Sci Soc Am J 38:103–107CrossRefGoogle Scholar
  33. ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J, Prevost M, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447PubMedCrossRefGoogle Scholar
  34. Vitousek PM (1999) Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems 2:505–510CrossRefGoogle Scholar
  35. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57–58:1–45CrossRefGoogle Scholar
  36. Vitousek PM, Field CB (1999) Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46:179–202Google Scholar
  37. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  38. Wagstaff SJ, Heenan PB, Sanderson MJ (1999) Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 86:1346–1356PubMedCrossRefGoogle Scholar
  39. Walker S, Cieraad E, Monks A, Burrows L, Wood J, Price R, Rogers G, Lee B, Hobbs RJ, Suding KN (2009a) Long-term dynamics and rehabilitation of woody ecosystems in dryland South Island, New Zealand. In New models for ecosystem dynamics and restoration. Island Press, Washington DC, USA, pp 99–111Google Scholar
  40. Walker S, King N, Monks A, Williams S, Burrows L, Cieraad E, Meurk C, Overton JM, Price R, Smale M (2009b) Secondary woody vegetation patterns in New Zealand's South Island dryland zone. N Z J Bot 47:367–393CrossRefGoogle Scholar
  41. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  42. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513PubMedCrossRefGoogle Scholar
  43. Wilde RH (2003) Manual for national soils database. Landcare Research, Palmerston NorthGoogle Scholar
  44. Wiser SK, Bellingham PJ, Burrows LE (2001) Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N Z J Ecol 25:1–17Google Scholar
  45. Zahran HH (1999) Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Adrian Monks
    • 1
  • Ellen Cieraad
    • 2
  • Larry Burrows
    • 2
  • Susan Walker
    • 1
  1. 1.Landcare ResearchDunedinNew Zealand
  2. 2.Landcare ResearchLincolnNew Zealand

Personalised recommendations