Plant and Soil

, Volume 355, Issue 1–2, pp 353–362 | Cite as

Contribution of phosphorus (32P) absorption and remobilization for citrus growth

  • Fernando C. Bachiega Zambrosi
  • Dirceu MattosJr.
  • Rodrigo M. Boaretto
  • José A. Quaggio
  • Takashi Muraoka
  • James P. Syvertsen
Regular Article


Background and aims

Phosphorus (P) is a mobile nutrient in the plant so growth depends on its internal remobilization and a plant’s ability to respond to its availability in the growing media. This study was conducted to evaluate the influence of P status and rootstocks on the patterns of P uptake and remobilization in orange trees.


Sweet orange trees on Cleopatra mandarin (CM) or Rangpur lime (RL) rootstocks were grown for nine months in nutrient solution (NS) that was either P-deficient (DNS) or was P-sufficient (SNS). After this period, half of the trees were reciprocally transferred between DNS and SNS (from D to S and S to D), while the others remained in their initial P availability.


Trees on RL had more shoot and root growth, accumulated more P and had greater efficiency of P absorption and transport to the shoot (PAE) than those on CM. The major source of P for growth was previously stored P even with an adequate current P supply to the roots. This suggested the dominance of P remobilization over P uptake and the requirement that trees had sufficient stored P to meet P demand of new growth. Trees on CM had greater concentrations of remobilized P in new shoots than trees on RL.


Trees grafted on rootstocks less able to take up P (CM) were more dependent on the internal reserves of P for new growth than rootstocks with higher PAE (RL).


Nutritional stress Nutrient solution Rootstock varieties Root growth Uptake efficiency 



We thank the São Paulo State Research Foundation (FAPESP) for financial support (process 2007/04634-3).


  1. Bataglia OC, Furlani AMC, Teixeira JPF, Furlani PR, Gallo JR (1983) Método de análise química de plantas. Instituto Agronômico, CampinasGoogle Scholar
  2. Fife DN, Nambiar KS, Saur E (2008) Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol 28:187–196. doi: 10.10-3/treephys/28.2.187 PubMedCrossRefGoogle Scholar
  3. Georgiou A (2000) Performance of ‘Nova’ mandarin on eleven rootstocks in Cyprus. Sci Hortic 84:115–126. doi: 10.1016/S0304-4238(99)00120-X CrossRefGoogle Scholar
  4. Georgiou A (2002) Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Sci Hortic 93:29–38. doi: 10.1016/S0304-4238(01)00311-9 CrossRefGoogle Scholar
  5. Giorgi M, Capocasa F, Scalzo J, Murri G, Battiono M, Mezzetti B (2005) The rootstock effects on plant adaptability, production, fruit quality, and nutrition in the peach (cv. ‘Suncrest’). Sci Hortic 107:36–42. doi: 10.1016/j.scienta.2005.06.003 CrossRefGoogle Scholar
  6. Graham JH, Syvertsen JP (1985) Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol 101:667–676CrossRefGoogle Scholar
  7. Guardiola JL, García-Marí F, Agustí M (1984) Competition and fruit set in the Washington navel orange. Physiol Plantarum 62:297–302. doi: 10.1111/j.1399-3054.1984.tb04576.x CrossRefGoogle Scholar
  8. Hammond JP, Broadley MR, White PJ (2004) Genetic response to phosphorus deficiency. Annals Bot 94:323–332. doi: 10.1093/aob/mch156 CrossRefGoogle Scholar
  9. Helmisaari H (1992) Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiol 10:45–58. doi: 10.1093/treephys/10.1.45 PubMedGoogle Scholar
  10. Jeschke WD, Kirkby EA, Peuke AD, Pate JS, Hartung W (1997) Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). J Exp Bot 48:75–91. doi: 10.1093/jxb/48.1.75 CrossRefGoogle Scholar
  11. Jungk A, Asher CJ, Edwards DG, Meyer D (1990) Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glycine max). Plant Soil 124:175–182. doi: 10.1007/BF00009256 CrossRefGoogle Scholar
  12. Karthikeyan AS, Varadajan DK, Mukatira UT, D’urzo MP, Damsz B, Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130:221–233. doi: 10.1104/pp.020007 PubMedCrossRefGoogle Scholar
  13. Lauer MJ, Blevins DG (1989) Dry matter accumulation and phosphate distribution in soybean grown on varying levels of phosphate nutrition. J Plant Nut 12:1045–1060CrossRefGoogle Scholar
  14. Lea-Cox JD, Syvertsen JP (2001) Springtime 15nitrogen uptake, partitioning, and leaching losses from young bearing Citrus trees of differing nitrogen status. J Amer Soc Hort Sci 126:242–251Google Scholar
  15. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi: 10.1146/annurev.arplant.57.032905.105316 PubMedCrossRefGoogle Scholar
  16. Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissue by phosphorus. Plant Physiol 116:91–99. doi: 10.1104/pp.116.1.91 PubMedCrossRefGoogle Scholar
  17. Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263. doi: 10.1093/jxb/47. Special_Isssue, 1255PubMedCrossRefGoogle Scholar
  18. Mattos D Jr, Quaggio JA, Cantarella H, Alva AK (2003) Nutrient content of biomass components of Hamlin sweet orange trees. Sci Agric 60:155–160. doi: 10.1590/S0103-90162003000100023 CrossRefGoogle Scholar
  19. Mattos D Jr, Quaggio JA, Cantarella H, Alva AK, Graets DA (2006) Response of young citrus trees on selected rootstocks to nitrogen, phosphorus, and potassium fertilization. J Plant Nut 29:1371–1385. doi: 10.1080/01904160600830159 CrossRefGoogle Scholar
  20. Milla R, Castro-Díez P, Maestro-Martínesz M, Monserrat-Martí G (2005) Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol 168:167–178. doi: 10.1111/j.1469-8137.2005.01477.x PubMedCrossRefGoogle Scholar
  21. Mimura T (2001) Physiological control of phosphate uptake and phosphate homeostasis in plant cells. Aust J Plant Physiol 28:653–658. doi: 10.1071/PP01077 Google Scholar
  22. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creef A, Reef A, Somerville S, Rolland N, Doumas P, Narcy P, Herrera-Estrella L, Nussaume L, Thibaud M (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci 102:11934–11939. doi: 10.1073/pnas.0505266102 PubMedCrossRefGoogle Scholar
  23. Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Bjorn U, Czechowski T, Udvardi MK, Stitt M, Scheible (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112. doi: 10.1111/j.1365-3040.2006.01608.x PubMedCrossRefGoogle Scholar
  24. Nambiar EK, Fife DN (1991) Nutrient retranslocation in temperate conifers. Tree Physiol 9:185–207. doi: 10.1093/treephys/9.1-2.185 Google Scholar
  25. Nascimento Filho VF, Lobão AE (1977) Detecção de 32P em amostras de origem animal e vegetal por efeito Cerenkov, cintilação líquida e detector GM. CENA/USP, PiracicabaGoogle Scholar
  26. Peng Z, Li C (2005) Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag-leaf expansion. Plant Soil 268:1–11. doi: 10.1007/s11104-004-0297-1 CrossRefGoogle Scholar
  27. Quaggio JA, Mattos D Jr, Cantarella H, Stuchi ES, Sempionato OR (2004) Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium. Pesq Agropec Bras 39:55–60. doi: 10.1590/s0100-204x2004000100008 CrossRefGoogle Scholar
  28. Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol and Plant Molec Biol 50:665–693. doi: 10.1146/annurev.arplant.50.1.665 CrossRefGoogle Scholar
  29. Raghothama KG (2000) Phosphate transport and signaling. Curr Opin Plant Biol 3:182–187. doi: 10.1016/S1369-5266(00)80063-1 PubMedGoogle Scholar
  30. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37. doi: 10.1007/s00425-002-0921-3 PubMedCrossRefGoogle Scholar
  31. Sanz A, Monerri C, González-Ferrer J, Guardiola JL (1987) Changes in carbohydrates and mineral elements in Citrus leaves during flowering and fruit set. Physiol Plantarum 69:93–98. doi: 10.1111/j.1399-3054.1987.tb01950.x CrossRefGoogle Scholar
  32. Sarruge JR (1975) Soluções nutritivas. Summa Phytopatol 1:231–233Google Scholar
  33. Saur E, Nambiar EKS, Fife DN (2000) Foliar nutrient retranslocation in Eucalyptus globules. Tree Physiol 20:1105–1112. doi: 10.1093/treephys/20.16.1105 PubMedCrossRefGoogle Scholar
  34. Schachtman DP, Reid RL, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 119:447–453. doi: 10.1104/pp.116.2.447 CrossRefGoogle Scholar
  35. Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of citrus rootstocks. J Amer Soc Hort Sci 110:865–869Google Scholar
  36. Taylor BK, Dimsey RT (1993) Rootstock and scion effects on the leaf nutrient composition of citrus. Aust J Exp Agric 33:363–371. doi: 10.1071/EA9930363 CrossRefGoogle Scholar
  37. Usuda H (1995) Phosphate deficiency in maize. V. mobilization of nitrogen and phosphorus within shoots of young plants and its relationship to senescence. Plant Cell Physiol 36:1041–1049Google Scholar
  38. Wutscher HK (1989) Alteration of fruit tree nutrition through rootstocks. HortSci 24:578–584Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Fernando C. Bachiega Zambrosi
    • 1
  • Dirceu MattosJr.
    • 2
  • Rodrigo M. Boaretto
    • 2
  • José A. Quaggio
    • 1
  • Takashi Muraoka
    • 3
  • James P. Syvertsen
    • 4
  1. 1.Centro de Solos e Recursos Ambientais, Instituto AgronômicoCampinasBrazil
  2. 2.Centro de Citricultura Sylvio Moreira, Instituto AgronômicoCordeirópolisBrazil
  3. 3.USP/CENAPiracicabaBrazil
  4. 4.UF/IFAS, Citrus Research and Education CenterLake AlfredUSA

Personalised recommendations