Advertisement

Plant and Soil

, Volume 352, Issue 1–2, pp 405–417 | Cite as

Application of nitrogen fertilizer to a boreal pine forest has a negative impact on the respiration of ectomycorrhizal hyphae

  • Harry W. Vallack
  • Vincenzo Leronni
  • Daniel B. Metcalfe
  • Peter Högberg
  • Phil Ineson
  • Jens-Arne Subke
Regular Article

Abstract

Aims

There is evidence that increased N inputs to boreal forests, via atmospheric deposition or intentional fertilization, may impact negatively on ectomycorrhizal (ECM) fungi leading to a reduced flux of plant-derived carbon (C) back to the atmosphere via ECM. Our aim was to investigate the impact of N fertilization of a Pinus sylvestris (L.) forest stand on the return of recently photoassimilated C via the ECM component of soil respiration.

Methods

We used an in situ, large-scale, 13C-CO2 isotopic pulse labelling approach and monitored the 13C label return using soil gas efflux chambers placed over three different types of soil collar to distinguish between heterotrophic (RH), autotrophic (RA; partitioned further into contributions from ECM hyphae and total RA) and total (RS) soil respiration.

Results

The impact of N fertilization was to significantly reduce RA, particularly respiration via extramatrical ECM hyphae. ECM hyphal flux in control plots showed substantial spatial variability, resulting in mean flux estimates exceeding estimates of total RA, while ECM contributions to RA in N treated plots were estimated at around 30%.

Conclusion

Significant impacts on soil C cycling may be caused by reduced plant C allocation to ECM fungi in response to increased N inputs to boreal forests; ecosystem models so far lack this detail.

Keywords

13CO2 Pulse labelling Soil CO2 efflux Ectomycorrhizas Soil respiration Boreal forest 

Abbreviations

ANOVA

Analysis of variance

ECM

Ectomycorrhiza

C

Carbon

CO2

Carbon dioxide

CF-IRMS

Continuous-flow isotope ratio mass spectrometer

N

Nitrogen

PVC

Polyvinyl chloride

RS

Soil respiration

RA

Autotrophic soil respiration

RH

Heterotrophic soil respiration

Notes

Acknowledgements

This study was supported by grants from SLU, the Kempe Foundations, the research councils VR and FORMAS (to P.H.) and the UK Natural Environment Research Council (NERC grant ref.NE ⁄ E004512 ⁄ 1). We are grateful to Sylvia Toet (York) for loan of the CO2 flux chamber as well as to Toby Gass, Erica Nocchi, Sonja Keel and other members of the CANIFLEX team for assistance in the field.

References

  1. Ågren GI, Bosatta E, Magill A (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98CrossRefGoogle Scholar
  2. Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonised by Paxillus involutus (Fr) Fr. New Phytol 130:411–417Google Scholar
  3. Bhupinderpal-Singh NA, Ottoson-Löfvenius M, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296CrossRefGoogle Scholar
  4. Boberg J, Finlay RD, Stenlid J, Näsholm T, Lindahl BD (2008) Glucose and ammonium additions affect needle decomposition and carbon allocation by the litter degrading fungus Mycena epipterygia. Soil Biol Biochem 40:995–999CrossRefGoogle Scholar
  5. Bond-Lamberty B, Wang C, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–487CrossRefGoogle Scholar
  6. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124CrossRefGoogle Scholar
  7. Cannell MGR, Dewar RC (1994) Carbon allocation in trees—a review of concepts for modeling. Adv Ecol Res 25:59–104CrossRefGoogle Scholar
  8. Carbone MS, Czimczik CI, McDuffee KE, Trumbore SE (2007) Allocation and residence time of photosynthetic products in a boreal forest using a low-level 14C pulse-chase labeling technique. Glob Change Biol 13:466–477CrossRefGoogle Scholar
  9. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190PubMedCrossRefGoogle Scholar
  10. Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142Google Scholar
  11. Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308CrossRefGoogle Scholar
  12. Franklin O, Högberg P, Ekblad A, Ågren GI (2003) Pine forest floor carbon accumulation in response to N and PK additions: bomb 14C modelling and respiration studies. Ecosystems 6:644–658CrossRefGoogle Scholar
  13. Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochem 70:153–226CrossRefGoogle Scholar
  14. Heinemeyer A, Hartley IP, Evans SP, De la Fuente JAC, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Change Biol 13:1786–1797CrossRefGoogle Scholar
  15. Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795CrossRefGoogle Scholar
  16. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554PubMedCrossRefGoogle Scholar
  17. Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792PubMedCrossRefGoogle Scholar
  18. Högberg P, Buchmann N, Read DJ (2006) Comments on Yakov Kuzyakov’s review ‘Sources of CO2 efflux from soil and review of partitioning methods’ [Soil Biology & Biochemistry 38, 425–448]. Soil Biol Biochem 38:2997–2998CrossRefGoogle Scholar
  19. Högberg P, Högberg MN, Göttlicher SG et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228PubMedGoogle Scholar
  20. Högberg MN, Briones MJI, Keel SG et al (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493PubMedCrossRefGoogle Scholar
  21. Janssens IA, Dieleman W, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315–322CrossRefGoogle Scholar
  22. Koide RT, Fernandez CW, Peoples MS (2011) Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytol. doi: 10.1111/j.1469-8137.2011.03694.x
  23. Lamarque JF, Kiehl JT, Brasseur GP et al (2005) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition. J Geophys Res Atmos 110, D19303Google Scholar
  24. Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312CrossRefGoogle Scholar
  25. Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959PubMedCrossRefGoogle Scholar
  26. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  27. Mäkelä A, Valentine HT, Helmisaari HS (2008) Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytol 180:114–123PubMedCrossRefGoogle Scholar
  28. Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416CrossRefGoogle Scholar
  29. Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob Change Biol 11:1745–1753CrossRefGoogle Scholar
  30. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391CrossRefGoogle Scholar
  31. Smith SE, Read DL (2008) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  32. Subke J-A, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a meta-analytical review. Glob Change Biol 12:921–943CrossRefGoogle Scholar
  33. Subke J-A, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of boreal pine forest. New Phytol 183:349–357PubMedCrossRefGoogle Scholar
  34. Subke J-A, Voke NR, Leronni V, Garnett MH, Ineson P (2011) Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. J Ecol 99:186–193CrossRefGoogle Scholar
  35. Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515CrossRefGoogle Scholar
  36. Trumbore S (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12:141–153CrossRefGoogle Scholar
  37. Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865PubMedCrossRefGoogle Scholar
  38. Vitousek PM, Aber JD, Howarth RW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  39. Vogt KA, Publicover DA, Bloomfield J, Perez JM, Vogt DJ, Silver WL (1993) Belowground responses as indicators of environmental change. Environ Exp Bot 33:189–205CrossRefGoogle Scholar
  40. Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503CrossRefGoogle Scholar
  41. Wallander H, Nilsson LO, Hagerberg D, Baath E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760CrossRefGoogle Scholar
  42. Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecol Manag 262:999–1007CrossRefGoogle Scholar
  43. Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187CrossRefGoogle Scholar
  44. Wallenda T, Schaeffer C, Einig W et al (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L] Karst). 2. Carbon metabolism in needles and mycorrhizal roots. Plant Soil 186:361–369CrossRefGoogle Scholar
  45. White A, Cannell MGR, Friend AD (2000) The high-latitude terrestrial carbon sink: a model analysis. Glob Change Biol 6:227–245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Harry W. Vallack
    • 1
  • Vincenzo Leronni
    • 2
  • Daniel B. Metcalfe
    • 3
  • Peter Högberg
    • 3
  • Phil Ineson
    • 1
  • Jens-Arne Subke
    • 4
  1. 1.Stockholm Environment InstituteUniversity of YorkYorkUK
  2. 2.Department of Agro-Environmental and Territorial SciencesUniversity of BariBariItaly
  3. 3.Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
  4. 4.School of Natural Sciences, Biological and Environmental SciencesUniversity of StirlingStirlingUK

Personalised recommendations