Plant and Soil

, Volume 352, Issue 1–2, pp 199–215 | Cite as

The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile

  • Patrick Faubert
  • Päivi Tiiva
  • Anders Michelsen
  • Åsmund Rinnan
  • Helge Ro-Poulsen
  • Riikka Rinnan
Regular Article


Background and aims

Mountain birch forests dominate in the Subarctic but little is known of their non-methane biogenic volatile organic compound (BVOC) emissions. The dwarf shrubs Empetrum hermaphroditum, Vaccinium myrtillus and Vaccinium uliginosum co-dominate in the forest floors of these forests. The abundance of these three dwarf shrubs relative to each other could be affected by climate warming expected to increase nutrient availability by accelerating litter decomposition and nutrient mineralization. We 1) compared the BVOC emission profiles of vegetation covers dominated by E. hermaphroditum and V. myrtillus plus V. uliginosum in a subarctic mountain birch forest floor, 2) distinguished the BVOCs emitted from plants and soil and 3) measured how the BVOC emissions from the different vegetation covers differed under darkness.


BVOCs were sampled during two growing seasons using a conventional ecosystem chamber-based method, collected on adsorbent and analyzed with gas chromatography–mass spectrometry.


High abundance of E. hermaphroditum increased the sesquiterpene emissions. Soil released fewer different BVOCs than controls (i.e. natural vegetation) but the total emission rates were similar. Darkness did not affect the emissions. Carbon emitted as BVOCs was less than 0.2% of the CO2 exchange.


Our results suggest that sesquiterpene emissions from subarctic mountain birch forest floors would be reduced following an increased abundance of V. myrtillus and V. uliginosum with climate change because these species respond rapidly to increased nutrient availability.


BVOC Subarctic Betula pubescens ssp. czerepanovii Empetrum nigrum ssp. hermaphroditum Vaccinium myrtillus Vaccinium uliginosum 



We thank Susan Owen for her comments that improved this paper, T. Oksanen for constructing the equipment and J. Tarhanen for assistance in the GC-MS analyses. The study was financially supported by the Emil Aaltonen Foundation, an EU ATANS grant (Fp6 506004), the Danish Council for Independent Research | Natural Sciences and the Abisko Scientific Research Station. P.F. acknowledges the support from the FQRNT, North Savo Regional Fund of the Finnish Cultural Foundation and Ella and Georg Ehrnrooth Foundation.

Supplementary material

11104_2011_989_MOESM1_ESM.doc (148 kb)
ESM 1  (DOC 148 kb)


  1. Aaltonen H, Pumpanen J, Pihlatie M, Hakola H, Hellén H, Kulmala L, Vesala T, Bäck J (2011) Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric For Meteorol 151:682–691CrossRefGoogle Scholar
  2. ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, New YorkGoogle Scholar
  3. Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44:3651–3659CrossRefGoogle Scholar
  4. Bäckstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D (2008) Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus 60B:226–237Google Scholar
  5. Beckmann M, Lloyd D (2001) Extraction and identification of volatile organic substances (VOS) from Scottish peat cores. Atmos Environ 35:79–86CrossRefGoogle Scholar
  6. Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate, an ecophysiological perspective. Academic, San Diego, pp 59–90Google Scholar
  7. Bret-Harte MS, Mack MC, Goldsmith GR, Sloan DB, DeMarco J, Shaver GR, Ray PM, Biesinger Z, Chapin FS III (2008) Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. J Ecol 96:713–726PubMedCrossRefGoogle Scholar
  8. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Elster J, Jónsdóttir IS, Laine K, Taulavuori K, Taulavuori E, Zöckler C (2004) Responses to projected changes in climate and UV-B at the species level. Ambio 33:418–435PubMedGoogle Scholar
  9. Chen F, Al-Ahmad H, Joyce B, Zhao N, Köllner TG, Degenhardt J, Stewart CN Jr (2009) Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol Biochem 47:1017–1023PubMedCrossRefGoogle Scholar
  10. Duhl TR, Helmig D, Guenther A (2008) Sesquiterpene emissions from vegetation: a review. Biogeosciences 5:761–777CrossRefGoogle Scholar
  11. Faubert P, Tiiva P, Rinnan Å, Michelsen A, Holopainen JK, Rinnan R (2010a) Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. New Phytol 187:199–208PubMedCrossRefGoogle Scholar
  12. Faubert P, Tiiva P, Rinnan Å, Räsänen J, Holopainen JK, Holopainen T, Kyrö E, Rinnan R (2010b) Non-methane biogenic volatile organic compound emissions from a subarctic peatland under enhanced UV-B radiation. Ecosystems 13:860–873CrossRefGoogle Scholar
  13. Faubert P, Tiiva P, Nakam TA, Holopainen JK, Holopainen T, Rinnan R (2011) Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown. Biogeochemistry. doi: 10.1007/s10533-011-9578-y
  14. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892CrossRefGoogle Scholar
  15. Haapanala S, Ekberg A, Hakola H, Tarvainen V, Rinne J, Hellén H, Arneth A (2009) Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere. Biogeosciences 6:2709–2718CrossRefGoogle Scholar
  16. Hellén H, Hakola H, Pystynen KH, Rinne J, Haapanala S (2006) C2-C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 3:167–174CrossRefGoogle Scholar
  17. Holst T, Arneth A, Hayward S, Ekberg A, Mastepanov M, Jackowicz-Korczynski M, Friborg T, Crill PM, Bäckstrand K (2010) BVOC ecosystem flux measurements at a high latitude wetland site. Atmos Chem Phys 10:1617–1634CrossRefGoogle Scholar
  18. Hultén E, Fries M (1986) Atlas of north European vascular plants: north of the tropic of cancer. Koeltz Scientific Books, KönigsteinGoogle Scholar
  19. Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213CrossRefGoogle Scholar
  20. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  21. Janson R, De Serves C, Romero R (1999) Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden. Agric For Meteorol 98–99:671–681CrossRefGoogle Scholar
  22. Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–106CrossRefGoogle Scholar
  23. Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80:1828–1843CrossRefGoogle Scholar
  24. Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochem Cycles 20:GB2016. doi: 10.1029/2005GB002590 CrossRefGoogle Scholar
  25. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88CrossRefGoogle Scholar
  26. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochem Cycles 16(4):1126. doi: 10.1029/2001GB001813 CrossRefGoogle Scholar
  27. Klinger LF, Zimmerman PR, Greenberg JP, Heidt LE, Guenther AB (1994) Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland. J Geophys Res 99:1469–1494CrossRefGoogle Scholar
  28. Kuhn U, Andreae MO, Ammann C, Araújo AC, Brancaleoni E, Ciccioli P, Dindorf T, Frattoni M, Gatti LV, Ganzeveld L, Kruijt B, Lelieveld J, Lloyd J, Meixner FX, Nobre AD, Pöschl U, Spirig C, Stefani P, Thielmann A, Valentini R, Kesselmeier J (2007) Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget. Atmos Chem Phys 7:2855–2879CrossRefGoogle Scholar
  29. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51PubMedCrossRefGoogle Scholar
  30. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636CrossRefGoogle Scholar
  31. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  32. Nadelhoffer KJ, Giblin AE, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in arctic soils. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic, San Diego, pp 281–300Google Scholar
  33. Niinemets Ü, Reichstein M (2002) A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Global Biogeochem Cycles 16:1110. doi: 10.1029/2002GB001927 CrossRefGoogle Scholar
  34. Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246CrossRefGoogle Scholar
  35. Nilsson MC, Wardle DA, Zackrisson O, Jäderlund A (2002) Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3–17CrossRefGoogle Scholar
  36. Noe SM, Ciccioli P, Brancaleoni E, Loreto F, Niinemets Ü (2006) Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos Environ 40:4649–4662CrossRefGoogle Scholar
  37. Ortega J, Helmig D (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part A. Chemosphere 72:343–364PubMedCrossRefGoogle Scholar
  38. Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994) Growth responses of four sub-arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318CrossRefGoogle Scholar
  39. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144PubMedCrossRefGoogle Scholar
  40. Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327CrossRefGoogle Scholar
  41. Rinnan R, Rinnan Å, Faubert P, Tiiva P, Holopainen JK, Michelsen A (2010) Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs. Environ Exp Bot 72:377–386CrossRefGoogle Scholar
  42. Rinne J, Bäck J, Hakola H (2009) Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions. Boreal Env Res 14:807–826Google Scholar
  43. Robinson CH, Michelsen A, Lee JA, Whitehead SJ, Callaghan TV, Press MC, Jonasson S (1997) Elevated atmospheric CO2 affects decomposition of Festuca vivipara (L.) Sm. litter and roots in experiments simulating environmental change in two contrasting arctic ecosystems. Global Change Biol 3:37–49CrossRefGoogle Scholar
  44. Staudt M, Bertin N, Frenzel B, Seufert G (2000) Seasonal variation in amount and composition of monoterpenes emitted by young Pinus pinea trees – implications for emission modeling. J Atmos Chem 35:77–99CrossRefGoogle Scholar
  45. Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biol 12:686–702CrossRefGoogle Scholar
  46. Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560PubMedCrossRefGoogle Scholar
  47. Tiiva P, Rinnan R, Faubert P, Räsänen J, Holopainen T, Kyrö E, Holopainen JK (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355PubMedCrossRefGoogle Scholar
  48. Tiiva P, Faubert P, Michelsen A, Holopainen T, Holopainen JK, Rinnan R (2008) Climatic warming increases isoprene emission from a subarctic heath. New Phytol 180:853–863PubMedCrossRefGoogle Scholar
  49. Tiiva P, Faubert P, Räty S, Holopainen JK, Holopainen T, Rinnan R (2009) Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms. Atmos Environ 43:5469–5475CrossRefGoogle Scholar
  50. Tybirk K, Nilsson MC, Michelsen A, Kristensen HL, Shevtsova A, Strandberg MT, Johansson M, Nielsen KE, Rils-Nielsen T, Strandberg B, Johnsen I (2000) Nordic Empetrum dominated ecosystems: function and susceptibility to environmental changes. Ambio 29:90–97Google Scholar
  51. Van Wijk MT, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FS III, Cornelissen JHC, Gough L, Hobbie SE, Jonasson S, Lee JA, Michelsen A, Press MC, Richardson SJ, Rueth H (2004) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Global Change Biol 10:105–123CrossRefGoogle Scholar
  52. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103:1342–1346PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Patrick Faubert
    • 1
    • 4
  • Päivi Tiiva
    • 1
  • Anders Michelsen
    • 2
  • Åsmund Rinnan
    • 3
  • Helge Ro-Poulsen
    • 2
  • Riikka Rinnan
    • 2
  1. 1.Department of Environmental ScienceUniversity of Eastern FinlandKuopioFinland
  2. 2.Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagen KDenmark
  3. 3.Quality and Technology, Department of Food Science, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  4. 4.Research Unit for Environmental Simulation, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations