Plant and Soil

, Volume 345, Issue 1–2, pp 89–102 | Cite as

Trigonella arcuata-associated rhizobia—an Ensifer (Sinorhizobium) meliloti population adapted to a desert environment

  • Yu Rong He
  • Jing Yu Wang
  • En Tao Wang
  • Gu Feng
  • Yue Li Chang
  • Xin Hua Sui
  • Wen Xin Chen
Regular Article


With the aim of systematically investigating rhizobia associated with the Trigonella arcuata—an ephemeral legume native to the Gurbantunggut Desert—66 bacterial strains were isolated from root nodules and characterized with PCR-based RFLP of 16S rRNA and nodC genes, RFLP of ribosomal IGS, BOX-PCR, and sequencing of housekeeping (16S rRNA, recA, atpD) and symbiotic (nodC and nifH) genes, numerical taxonomy and nodulation tests. The T. arcuata rhizobia were classified as Ensifer (Sinorhizobium) meliloti, but the 10% differences in nodC and nifH gene sequences and the 20% phenotypic dissimilarity demonstrated that the T. arcuata rhizobia have divergently evolved from the E. meliloti reference strains. Although they shared several other hosts under laboratory conditions, the studied rhizobial population seems adapted to their natural environment based upon their wide range of resistance to desert conditions. All these data indicate that T. arcuata rhizobia are a valuable source of rhizobial inoculants for bioremediation of arid areas.


Ephemeral plant Trigonella arcuata Desert Rhizobia Divergent evolution 



The authors would like to thank Dr. Michael Dunn for critical reading the manuscript. This work was supported by the Foundation of the National Project for Basic S & T Platform Construction (grant 2005DKA21201-10), of the State Key Basic Research and Development Plan of China (grant 2010CB126500), and by National Natural Science Foundation of China (project no. 30970004). ETW was financially supported by grants of SIP20100067 authorized by IPN and PICS08-3 authorized by ICyT DF of Mexico.

Supplementary material

11104_2011_762_MOESM1_ESM.ppt (174 kb)
ESM 1 (PPT 174 kb)
11104_2011_762_MOESM2_ESM.doc (81 kb)
Supplementary Table S1 Phenotypic features of Tragonalla arcuata rhozobia and its closest relatives. (DOC 81.0 kb)


  1. Arun AB, Sridhar KR (2005) Growth tolerance of rhizobia isolated from sand dune legumes of the southwest coast of India. Eng Life Sci 5:134–138CrossRefGoogle Scholar
  2. Bhagya B, Sridhar KR (2009) Ethnobiology of coastal sand dune legumes of Southwest coast of India. Indian J Tradit Knowl 8:611–620Google Scholar
  3. Feng RH (2000) Genetic diversity of rhizobia of Medicago edgeworthii by AFLP and RFLP analysis (in Chinese). Acta Microbiol Sin 40:339–345Google Scholar
  4. Gao JL, Sun JG, Li Y et al (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province of China. Int J Syst Bacteriol 44:151–158CrossRefGoogle Scholar
  5. Guan GL, Li ZY, Yang YS et al (1988) Trigonella arcuata C. A. Mey (in Chinese). Arid Zone Res 4:1–6Google Scholar
  6. Hou BC, Wang ET, Li Y et al. (2009a) Rhizobial resource associated with epidemic legumes in TibetGoogle Scholar
  7. Hou BC, Wang ET, Li Y Jr et al (2009b) Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 59:3051–3057PubMedCrossRefGoogle Scholar
  8. Kumar S, Tamura K, Nei M (2004) MEGA 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  9. Kuykendall LD, Hashem SM, Wang ET (2005) Genus VII. Sinorhizobium de Lajudie et al. 1994. 715AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. Springer, New York, pp 358–361CrossRefGoogle Scholar
  10. Laguerre G, Allard MR, Revoy F et al (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63PubMedGoogle Scholar
  11. Lagurre G, Nour SM, Macheret V et al (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993Google Scholar
  12. Mao Z, Zhang D (1994) The conspectus of ephemeral flora in the northern Xinjiang (in Chinese). Arid Zone Res 11:1–26Google Scholar
  13. Mnasri B, Mrabet M, Laguerre G et al (2007) Salt tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85PubMedCrossRefGoogle Scholar
  14. Mnasri B, Badri Y, Saïdi S et al (2009) Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst Appl Microbiol 32:583–592PubMedCrossRefGoogle Scholar
  15. Navarro E, Simonet P, Normand P et al (1992) Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115PubMedGoogle Scholar
  16. Nick G, de Lajudie P, Eardly BD et al (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  17. Nick G, Rasanen LA, de Lajudie P et al (1999) Genomic screening of rhizobia isolated from root nodules of tropical leguminous trees using DNA-DNA dotblot hybridization and rep-PCR. Syst Appl Microbiol 22:287–299Google Scholar
  18. Rome S, Fernandez MP, Brunel B et al (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980PubMedCrossRefGoogle Scholar
  19. Sarita S, Sharma PK, Priefer UB et al (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11PubMedCrossRefGoogle Scholar
  20. Sebbane N, Sahnoune M, Zakhia F et al (2006) Phenotypical and genotypical characteristics of root-nodulating bacteria isolated from annual Medicago spp. in Soummam Valley (Algeria). Lett Appl Microbiol 42:235–241PubMedCrossRefGoogle Scholar
  21. Shi ZY, Zhang LY, Li XL et al (2007) Diversity of arbuscular mycorrizal fungi associated with desert ephemerals in plant communities of Junggar Basin, northwest China (in Chinese). Appl Soil Ecol 35:10–20CrossRefGoogle Scholar
  22. Sneath PHA, Sokal RR (1973) Numerical taxonomy-the principles and practices of numerical classification. Freeman, San FranciscoGoogle Scholar
  23. Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, KewGoogle Scholar
  24. Sprent JI (2009) Legume nodulation: a global perspective. Wiley-Blackwell, ChichesterGoogle Scholar
  25. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  26. Tan ZY, Xu XD, Wang ET et al (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879PubMedCrossRefGoogle Scholar
  27. Terefework Z, Nick G, Suomalainen S et al (1998) Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48:349–356PubMedGoogle Scholar
  28. Terefework Z, Kaijalainen S, Lindstron K (2001) AFLP fingerprint as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega offcinalis. J Biotechnol 91:169–180PubMedCrossRefGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4867–4882Google Scholar
  30. van Berkum P, Beyene B, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaesolus vulgaris L.). Int J Syst Bacteriol 46:240–244PubMedCrossRefGoogle Scholar
  31. van Berkum P, Beyene D, Bao G et al (1998) Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica (L.) Ledebour. Int J Syst Bacteriol 48:13–22PubMedCrossRefGoogle Scholar
  32. Vandamme P, Goris J, Chen WM et al (2002) A Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512PubMedCrossRefGoogle Scholar
  33. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:25–40Google Scholar
  34. Villegas MC, Rome S, Maure L et al (2006) Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 29:526–538CrossRefGoogle Scholar
  35. Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: Vincent JM (ed) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific, Oxford, pp 1–13Google Scholar
  36. Vinuesa P, Silva C, Lorite MJ et al (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716PubMedCrossRefGoogle Scholar
  37. Wang ET, Martinez-Romero J, Martinez-Romero E (1999) Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol 8:711–724CrossRefGoogle Scholar
  38. Wang XQ, Jiang J, Lei JQ et al (2003) The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantungguut Desert (in Chinese). Acta Geogr Sin 58:598–605Google Scholar
  39. Yao H, Tan DY (2005) Size-dependent reproducitive output and life-history strategies in four ephemeral species of Trigonella (in Chinese). Acta Phytoecologica Sin 29:954–960Google Scholar
  40. You T, Tan Z, Gu L et al (2008) Characterization of root nodule and Rhizobium of a Leguminosae ephemeral plant-Trigonella arcuata C. A. Mey in Xinjiang (in Chinese). Acta Microbiol Sin 48:917–923Google Scholar
  41. Yu Z, Mohn WW (2001) Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl Environ Microbiol 67:1565–1574PubMedCrossRefGoogle Scholar
  42. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153PubMedCrossRefGoogle Scholar
  43. Zakhia F, Jeder H, Domergue O et al (2004) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395PubMedCrossRefGoogle Scholar
  44. Zhao CT, Wang ET, Chen WF et al (2008) Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. FEMS Microbiol Lett 286:263–273PubMedCrossRefGoogle Scholar
  45. Zurdo-Piñeiro JL, García-Fraile P, Rivas R et al (2009) Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain. Appl Environ Microbiol 75:2354–2359PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yu Rong He
    • 1
  • Jing Yu Wang
    • 1
  • En Tao Wang
    • 2
  • Gu Feng
    • 3
  • Yue Li Chang
    • 1
  • Xin Hua Sui
    • 1
  • Wen Xin Chen
    • 1
  1. 1.State Key Laboratory of AgroBiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
  2. 2.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxicoMexico
  3. 3.Key Laboratory of Plant Nutrition, Ministry of AgricultureChina Agricultural UniversityBeijingChina

Personalised recommendations