Plant and Soil

, Volume 343, Issue 1–2, pp 379–392 | Cite as

Arbuscular mycorrhizas in phosphate-polluted soil: interrelations between root colonization and nitrogen

  • Verena Blanke
  • Markus Wagner
  • Carsten Renker
  • Hannelore Lippert
  • Manfred Michulitz
  • Arnd J. Kuhn
  • François Buscot
Regular Article


To investigate whether arbuscular mycorrhizal fungi (AMF) – abundant in a phosphate-polluted but nitrogen-poor field site – improve plant N nutrition, we carried out a two-factorial experiment, including N fertilization and fungicide treatment. Percentage of root length colonized (% RLC) by AMF and tissue element concentrations were determined for four resident plant species. Furthermore, soil nutrient levels and N effects on aboveground biomass of individual species were measured. Nitrogen fertilization lowered % RLC by AMF of Artemisia vulgaris L., Picris hieracioides L. and Poa compressa L., but not of Bromus japonicus Thunb. This – together with positive N addition effects on N status, N:P-ratio and aboveground biomass of most species – suggested that plants are mycorrhizal because of N deficiency. Fungicide treatment, which reduced % RLC in all species, resulted in lower N concentrations in A. vulgaris and P. hieracioides, a higher N concentration in P. compressa, and did not consistently affect N status of B. japonicus. Evidently, AMF had an influence on the N nutrition of plants in this P-rich soil; however – potentially due to differences in their mycorrhizal responsiveness – not all species seemed to benefit from a mycorrhiza-mediated N uptake and accordingly, N distribution.


Arbuscular mycorrhiza Benomyl Element concentrations Nitrogen fertilization Phosphate pollution Root colonization 



Arbuscular mycorrhiza


Arbuscular mycorrhizal fungi


Percentage of root length colonized



This work was supported by a grant from the German Research Foundation (GRK 266). We thank Sandra Schau and Boris Börstler for help in the field, Birgit Schulze for freeze-drying of plant samples at the MPI for Chemical Ecology in Jena, Nadine Merki and Karin Lühring for plant element analyses and Claudia Krüger for root staining. We also thank Christoph Scherber for help with statistical analyses, Karen Budge for improving the English of the manuscript and Stefan Hempel for reviewing the manuscript prior to submission. Further, we thank two anonymous reviewers for helpful comments. Scotts Deutschland GmbH provided the fertilizer for free.

Supplementary material

11104_2011_727_MOESM1_ESM.pdf (40 kb)
Online Resource 1 Tissue element concentrations (other than N, P and N:P) of Artemisia vulgaris, Picris hieracioides, Poa compressa and Bromus japonicus for the different treatment combinations (averaged across blocks) (PDF 39 kb)
11104_2011_727_MOESM2_ESM.pdf (21 kb)
Online Resource 2 Total soil element concentrations (other than N, P and pH) for the different treatment combinations (averaged across blocks) (PDF 20 kb)


  1. Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8:41–45CrossRefGoogle Scholar
  2. Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389Google Scholar
  3. Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992PubMedCrossRefGoogle Scholar
  4. Blanke V, Schulze B, Gerighausen U, Küster S, Rothe R, Schulze H, Siñeriz M (2007) The power of regeneration: lessons from a degraded grassland. Restor Ecol 15:307–311CrossRefGoogle Scholar
  5. Bobbink R (1991) Effects of nutrient enrichment in Dutch chalk grassland. J Appl Ecol 28:28–41CrossRefGoogle Scholar
  6. Brouwer R (1983) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31:335–348Google Scholar
  7. Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–912PubMedCrossRefGoogle Scholar
  8. Cameron DD (2010) Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil 333:1–5CrossRefGoogle Scholar
  9. Chambers CA, Smith SE, Smith FA (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47–62CrossRefGoogle Scholar
  10. Chen S-K, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980CrossRefGoogle Scholar
  11. Daft MJ, Nicolson TH (1969) Effect of Endogone mycorrhiza on plant growth. New Phytol 68:945–952CrossRefGoogle Scholar
  12. Dhillion SS, Gardsjord TL (2004) Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Can J Bot 82:104–114CrossRefGoogle Scholar
  13. Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73(Suppl):S1301–S1309CrossRefGoogle Scholar
  14. Frey B, Schüepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221–230CrossRefGoogle Scholar
  15. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  16. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology - a functional approach to common British species. Castlepoint, DalbeattieGoogle Scholar
  17. Grogan P, Chapin FS III (2000) Nitrogen limitation of production in a Californian annual grassland: the contribution of arbuscular mycorrhizae. Biogeochemistry 49:37–51CrossRefGoogle Scholar
  18. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  19. Harrison MJ (2005) Signalling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  20. Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:418–423CrossRefGoogle Scholar
  21. Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195CrossRefGoogle Scholar
  22. Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331CrossRefGoogle Scholar
  23. Hawkins H-J, George E (1999) Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant 105:694–700CrossRefGoogle Scholar
  24. Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285CrossRefGoogle Scholar
  25. Heinrich W, Perner J, Marstaller R (2001) Regeneration und Sekundärsukzession - 10 Jahre Dauerflächenuntersuchungen im Immissionsgebiet eines ehemaligen Düngemittelwerkes. Z Ökol Naturschutz 9:237–253Google Scholar
  26. Held M, Baldwin IT (2005) Soil degradation slows growth and inhibits jasmonate-induced resistance in Artemisia vulgaris. Ecol Appl 15:1689–1700CrossRefGoogle Scholar
  27. Hendershot WH (1985) An inexpensive block digester for nitrogen determination in soil samples. Commun Soil Sci Plant Anal 16:1271–1278CrossRefGoogle Scholar
  28. Hetrick BAD, Wilson GWT, Todd TC (1992) Relationships of mycorrhizal symbiosis, rooting strategy, and phenology among tallgras prairie forbs. Can J Bot 70:1521–1528CrossRefGoogle Scholar
  29. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187CrossRefGoogle Scholar
  30. Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294CrossRefGoogle Scholar
  31. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91PubMedCrossRefGoogle Scholar
  32. Jensen A, Jakobsen I (1980) The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414CrossRefGoogle Scholar
  33. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647PubMedCrossRefGoogle Scholar
  34. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908CrossRefGoogle Scholar
  35. Johnson NC, Rowland DL, Corkidi L, Allen EB (2008) Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89:2868–2878PubMedCrossRefGoogle Scholar
  36. Kahiluoto H, Vestberg M (2000) Creation of a non-mycorrhizal control for a bioassay of AM effectiveness. 2. Benomyl application and soil sampling time. Mycorrhiza 9:259–270CrossRefGoogle Scholar
  37. Karanika ED, Mamolos AP, Alifragis DA, Kalburtji KL, Veresoglou DS (2008) Arbuscular mycorrhizas contribution to nutrition, productivity, structure and diversity of plant community in mountainous herbaceous grassland of northern Greece. Plant Ecol 199:225–234CrossRefGoogle Scholar
  38. Langer U, Günther T (2001) Effects of alkaline dust deposits from phosphate fertilizer production on microbial biomass and enzyme activities in grassland soils. Environ Pollut 112:321–327PubMedCrossRefGoogle Scholar
  39. Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207PubMedCrossRefGoogle Scholar
  40. Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  41. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  42. Metzner K, Friedrich Y, Schäller G (1997) Bodenparameter eines Immissionsgebiets vor und nach der Schließung eines Düngemittelwerks (1979-1997). Beitr Ökol 3:51–75Google Scholar
  43. Moora M, Zobel M (1996) Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia 108:79–84CrossRefGoogle Scholar
  44. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411PubMedCrossRefGoogle Scholar
  45. Olsson PA, van Aarle IM, Allaway WG, Ashford AE, Rouhier H (2002) Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171PubMedCrossRefGoogle Scholar
  46. Olsson PA, Burleigh SH, van Aarle I (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol 168:677–686PubMedCrossRefGoogle Scholar
  47. Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:123–131Google Scholar
  48. Paul ND, Ayres PG, Wyness LE (1989) On the use of fungicides for experimentation in natural vegetation. Funct Ecol 3:759–769CrossRefGoogle Scholar
  49. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  50. R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  51. Renker C, Blanke V, Buscot F (2005) Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environ Pollut 135:255–266PubMedCrossRefGoogle Scholar
  52. Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic Sci 4:385–395CrossRefGoogle Scholar
  53. Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638CrossRefGoogle Scholar
  54. Schmeil O, Fitschen J (1993) In: Sanghans K, Seybold S (eds) Flora von Deutschland und angrenzender Länder, 89th edn. Quelle & Meyer, HeidelbergGoogle Scholar
  55. Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114Google Scholar
  56. Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 177:387–398CrossRefGoogle Scholar
  57. Simard SW, Durall D, Jones M (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heiden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer Verlag, Berlin, pp 33–74Google Scholar
  58. Smith PF (1962) Mineral analyses of plant tissues. Annu Rev Plant Physiol 13:81–108CrossRefGoogle Scholar
  59. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  60. Smith MD, Hartnett DC, Wilson GWT (1999) Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121:574–582CrossRefGoogle Scholar
  61. Stein C, Rißmann C, Hempel S, Renker C, Buscot F, Prati D, Auge H (2009) Interactive effects of mycorrhizae and a hemiparasite on plant community productivity and diversity. Oecologia 159:191–205PubMedCrossRefGoogle Scholar
  62. Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310CrossRefGoogle Scholar
  63. Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534CrossRefGoogle Scholar
  64. Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187PubMedCrossRefGoogle Scholar
  65. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  66. Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214CrossRefGoogle Scholar
  67. Tobar R, Azcón R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122CrossRefGoogle Scholar
  68. Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515CrossRefGoogle Scholar
  69. van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heiden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer Verlag, Berlin, pp 243–265Google Scholar
  70. van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752PubMedCrossRefGoogle Scholar
  71. VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (1991) Methodenbuch. 1. Die Untersuchungen von Böden. VDLUFA Verlag, DarmstadtGoogle Scholar
  72. Wagner M (2004a) The roles of seed dispersal ability and seedling salt tolerance in community assembly of a severely degraded site. In: Temperton VM, Hobbs RJ, Nuttle T, Halle S (eds) Assembly rules and restoration ecology - bridging the gap between theory and practice. Island, Washington, pp 266–284Google Scholar
  73. Wagner M (2004b) Patterns and mechanisms of plant community assembly in an industrially degraded ecosystem. Dissertation, Friedrich Schiller University Jena.
  74. Wagner M, Heinrich W, Jetschke G (2006) Seed bank assembly in an unmanaged ruderal grassland recovering from long-term exposure to industrial emissions. Acta Oecol 30:342–352CrossRefGoogle Scholar
  75. West HM, Fitter AH, Watkinson AR (1993) The influence of three biocides on the fungal associates of the roots of Vulpia ciliata ssp. ambigua under natural conditions. J Ecol 81:345–350CrossRefGoogle Scholar
  76. Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738CrossRefGoogle Scholar
  77. Wilson GWT, Hartnett DC, Rice CW (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435CrossRefGoogle Scholar
  78. Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Verena Blanke
    • 1
    • 2
    • 7
  • Markus Wagner
    • 3
  • Carsten Renker
    • 2
    • 8
  • Hannelore Lippert
    • 4
  • Manfred Michulitz
    • 4
  • Arnd J. Kuhn
    • 5
  • François Buscot
    • 2
    • 6
  1. 1.Institute of EcologyFriedrich-Schiller-University JenaJenaGermany
  2. 2.Department of Soil EcologyUFZ - Helmholtz Centre for Environmental ResearchHalle/SaaleGermany
  3. 3.NERC Centre for Ecology & HydrologyWallingfordUK
  4. 4.Central Division of Analytical Chemistry (ZCH)Research Centre JülichJülichGermany
  5. 5.Institute for Phytosphere Research (ICG-3)Research Centre JülichLeo-Brandt-StrasseJülichGermany
  6. 6.Institute of Biology, Chair of Soil EcologyUniversity of LeipzigLeipzigGermany
  7. 7.Agroscope Reckenholz-Tänikon Research Station ART, Air Pollution/Climate GroupZürichSwitzerland
  8. 8.Natural History Museum MainzMainzGermany

Personalised recommendations