Plant and Soil

, Volume 340, Issue 1–2, pp 347–355 | Cite as

Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass

  • Cecilia Casas
  • Marina Omacini
  • Marcela Susana Montecchia
  • Olga Susana Correa
Regular Article


Cool-season grasses commonly harbor fungal endophytes in their aerial tissues. However the effects of these symbionts on soil microbial communities have rarely been investigated. Our objective was to explore microbial community responses in soils conditioned by plants of the annual grass Lolium multiflorum with contrasting levels of infection with the endophyte Neotyphodium occultans. At the end of the host growing season, we estimated the functional capacity of soil microbial communities (via catabolic response profiles), the contribution of fungi and bacteria to soil activity (via selective inhibition with antibiotics), and the structure of both microbial communities by molecular analyses. Soil conditioning by highly infected plants affected soil catabolic profiles and tended to increase soil fungal activity. We detected a shift in bacterial community structure while no changes were observed for fungi. Soil responses became evident even without changes in host plant biomass or soil organic carbon or total nitrogen content, suggesting that the endophyte modified host rhizodepositions during the conditioning phase. Our results have implications for the understanding of the reciprocal interactions between above and belowground communities, suggesting that plant-soil feedbacks can be mediated by this symbiosis.


Above and below ground interactions Aerial symbiosis Neotyphodium endophytes Lolium multiflorum Soil fungi and bacteria 



Lolium multiflorum population highly infected with the endophyte Neotyphodium occultans


Lolium multiflorum population lowly infected with the endophyte Neotyphodium occultans


catabolic response profile


selective inhibition


denaturing gradient gel electrophoresis


restriction fragment length polymorphism



We thank the owners of “Las Chilcas” farm, who kindly allowed us to take the soil used in the experiment and Marcos Texeira by helping us with statistical bootstrap. We are also grateful to Maria Semmartin and the anonymous reviewers who provided very valuable comments on the manuscript. This work was supported by grants from CONICET-ANPCyT (PICT 1728) and the Microbiology Department of Faculty of Agronomy, University of Buenos Aires.


  1. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221. doi: 10.1016/0038-0717(78)90099-8 CrossRefGoogle Scholar
  2. Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918. doi: 10.1111/j.1365-2435.2008.01432.x CrossRefGoogle Scholar
  3. Bacon CW, White JF Jr (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca RatonGoogle Scholar
  4. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878. doi: 10.1016/S0038-0717(98)00069-8 CrossRefGoogle Scholar
  5. Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7. doi: 0032-0889/97/114/0001/07 PubMedGoogle Scholar
  6. Clay K (1993) The ecology and evolution of endophytes. Agric Ecosyst Environ 44(1–4):39–64. doi: 10.1016/0167-8809(93)90038-Q CrossRefGoogle Scholar
  7. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(S4):S99–S127. doi: 10.1086/342161 CrossRefPubMedGoogle Scholar
  8. Correa OS, Montecchia MS, Berti MF, Fernández Ferrari MC, Pucheu NL, Kerber NL, García AF (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl Soil Ecol 41(2):185–194. doi: 10.1016/j.apsoil.2008.10.007 CrossRefGoogle Scholar
  9. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20(11):625–633. doi: 10.1016/j.tree.2005.08.009 CrossRefPubMedGoogle Scholar
  10. Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29(9–10):1309–1320. doi: 10.1016/s0038-0717(97)00076-x CrossRefGoogle Scholar
  11. Franzluebbers AJ, Stuedemann JA (2005) Soil carbon and nitrogen pools in response to Tall Fescue endophyte infection, fertilization, and cultivar. Soil Sci Soc Am J 69(2):396–403CrossRefGoogle Scholar
  12. Gundel P, Garibaldi L, Tognetti P, Aragón R, Ghersa C, Omacini M (2009) Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb Ecol 57(4):740–748. doi: 10.1007/s00248-008-9447-y CrossRefPubMedGoogle Scholar
  13. Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic, Amsterdam, pp 303–340Google Scholar
  14. InfoStat (2008) InfoStat. 2008 edn. FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  15. Jenkins M, Franzluebbers A, Humayoun S (2006) Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to Tall Fescue endophyte infection. Plant Soil 289(1):309–320. doi: 10.1007/s11104-006-9141-0 CrossRefGoogle Scholar
  16. Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145(4):595–604. doi: 10.1007/s00442-005-0163-8 CrossRefPubMedGoogle Scholar
  17. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117(2):310–320. doi: 10.1111/j.2007.0030-1299.15973.x CrossRefGoogle Scholar
  18. Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of Tall Fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205(1):1–12CrossRefGoogle Scholar
  19. Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409(6816):78–81. doi: org/10.1038/35051070 CrossRefPubMedGoogle Scholar
  20. Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104(3):581–590. doi: 10.1111/j.0030-1299.2004.12915.x CrossRefGoogle Scholar
  21. Omacini M, Chaneton EJ, Ghersa CM (2005) A hierarchical framework for understanding the ecosystem consequences of endophyte-grass symbioses. In: Robert CA, West CP, Spiers DE. (eds) Neothyphodium in cool season grasses, Blackwell Publishing Ltd, pp141–162Google Scholar
  22. Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20(2):226–232. doi: 10.1111/j.1365-2435.2006.01099.x CrossRefGoogle Scholar
  23. Perelman SB, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89(4):562–577CrossRefGoogle Scholar
  24. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for statistical Computing, Vienna, Austria, ISBN 3-900051-07-0,
  25. Ross DJ, Tate KR, Cairns A, Meyrick KF (1980) Influence of storage on soil microbial biomass estimated by three biochemical procedures. Soil Biol Biochem 12(4):369–374. doi: 10.1016/0038-0717(80)90012-7 CrossRefGoogle Scholar
  26. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596. doi: 10.1128/aem.02775-08 CrossRefPubMedGoogle Scholar
  27. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21(2–3):107–124. doi: 10.1016/j.fbr.2007.05.002 CrossRefGoogle Scholar
  28. Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97(2):247–255. doi: 10.1111/j.1365-2745.2008.01478.x CrossRefGoogle Scholar
  29. Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88(1):18–25. doi: 10.1890/0012-9658 CrossRefPubMedGoogle Scholar
  30. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav Ecol 17(4):688–690. doi: 10.1093/beheco/ark016 CrossRefGoogle Scholar
  31. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11(9):428–433. doi: 10.1016/j.tplants.2006.07.001 CrossRefPubMedGoogle Scholar
  32. Schipper LA, Degens BP, Sparling GP, Duncan LC (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biol Biochem 33(15):2093–2103. doi: 10.1016/s0038-0717(01)00142-0 CrossRefGoogle Scholar
  33. Schwarzenbach K, Enkerli J, Widmer F (2007) Objective criteria to assess representativity of soil fungal community profiles. J Microbiol Methods 68(2):358–366. doi: 10.1016/j.mimet.2006.09.015 CrossRefPubMedGoogle Scholar
  34. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69(3):470–479. doi: 10.1016/j.mimet.2007.02.014 CrossRefPubMedGoogle Scholar
  35. Sneath PH, Sokal RR (1973) Numerical Taxonomy. WH Freeman and Co., San FranciscoGoogle Scholar
  36. Stevenson BA, Sparling GP, Schipper LA, Degens BP, Duncan LC (2004) Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biol Biochem 36(1):49–55. doi: 10.1016/j.soilbio.2003.08.018 CrossRefGoogle Scholar
  37. Susyan EA, Ananyeva ND, Blagodatskaya EV (2005) The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems. Microbiology 74(3):336–342. doi: 10.1007/s11021-005-0072-1 CrossRefGoogle Scholar
  38. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi: 10.1111/j.1461-0248.2007.01139.x CrossRefPubMedGoogle Scholar
  39. van der Putten W, Bardgett R, de Ruiter P, Hol W, Meyer K, Bezemer T, Bradford M, Christensen S, Eppinga M, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss S, Vos M, Wardle D (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1):1–14. doi: 10.1007/s00442-009-1351-8 CrossRefPubMedGoogle Scholar
  40. Van Hecke M, Treonis A, Kaufman J (2005) How does the fungal endophyte Neotyphodium coenophialum affect Tall Fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275(1):101–109. doi: 10.1007/s11104-005-0380-2 CrossRefGoogle Scholar
  41. Vila Aiub MM, Martinez Ghersa MA, Ghersa CM (2003) Evolution of herbicide resistance in weeds: vertically transmitted fungal endophytes as genetic entities. Evol Ecol 17(5):441–456. doi: 10.1023/B:EVEC.0000005580.19018.fb CrossRefGoogle Scholar
  42. Wardle DA, Giller KE (1996) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28(12):1549–1554. doi: 003870717/96 CrossRefGoogle Scholar
  43. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi: 10.1126/science.1094875 CrossRefPubMedGoogle Scholar
  44. Wood M (2005) Bootstrapped confidence intervals as an approach to statistical inference. Organ Res Meth 8(4):454–470. doi: 10.1177/1094428105280059 CrossRefGoogle Scholar
  45. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communiites, and ecosystem function: are there any links? Ecology 84(8):2042–2050. doi: 10.1890/02-0433 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cecilia Casas
    • 1
  • Marina Omacini
    • 1
  • Marcela Susana Montecchia
    • 2
  • Olga Susana Correa
    • 2
  1. 1.IFEVA-CONICET, Cátedra de Ecología, Facultad de AgronomíaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.INBA-CONICET, Cátedra de Microbiología Agrícola, Facultad de AgronomíaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations