Skip to main content
Log in

A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Plant growth promoting rhizobacteria (PGPR) stimulate plant growth and development by different mechanisms, including the production of different classes of signaling molecules, which may directly affect plant morphogenesis. Here, we report the effects of inoculation of Arthrobacter agilis UMCV2, a PGPR isolated from the rhizosphere of maize plants on growth and development of Medicago sativa seedlings. A. agilis UMCV2 inoculation promoted growth in M. sativa plants as revealed by increased stem length, root length and plant biomass. Inoculation of A. agilis using divided Petri plates decreased taproot growth and increased lateral root formation in plants grown in separate compartments suggesting a role of volatile organic compounds (VOCs) produced by this bacterium in root development. The analysis of VOCs produced by A. agilis UMCV2 identified N,N-dimethyl-hexadecanamine (dimethylhexadecylamine), an amino lipid structurally related to bacterial quorum-sensing signals, which modulated A. agilis UMCV2 growth and plant development in a dose-dependent way. Taken together, our results indicate that bacterial VOCs can be perceived by legume plants to modulate growth and morphogenetic processes and identify a novel signaling molecule potentially involved in plant-rhizobacterial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209. doi:10.1007/s11104-004-5047-x

    Article  CAS  Google Scholar 

  • Babana AH, Antoun H (2005) Biological system for improving the availability of tilemsi phosphate rock for wheat (Triticum aestivum L.) cultivated in Mali. Nutr Cycl Agroecosyst 72:147–157. doi:10.1007/s10705-005-0241-7

    Article  Google Scholar 

  • Badri D, Vivanco J (2009) Regulation and function of root exudates. Plan Cell Environ 32:666–68. doi:10.1111/j.1365-3040.2009.01926.x

    Article  CAS  Google Scholar 

  • Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P, Prosser JI (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl Environ Microbiol 63:2281–2286

    CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102. doi:10.1016/S0065-2113(08)60425-3

    Article  Google Scholar 

  • Brenic A, Winans S (2005) Detection of and response to signals involved in host-microbe interactions by plant associated bacteria. Microbiol Mol Biol Rev 69:155–195. doi:10.1128/MMBR.69.1.155-194.2005

    Article  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116. doi:10.1126/science.1121357

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The Rhizosphere. Wiley, Chichester, pp 11–34

    Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi:10.1016/j.phytochem.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  • Gao MM, Teplitski JB, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834. doi:10.1094/MPMI.2003.16.9.827

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. doi:10.1016/j.femsle.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Gray MK, Pearson JP, Downie JA, Boboye BE A, Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178:372–376

    CAS  PubMed  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Reyes de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis. doi:10.1007/s13199-010-0066-2

    Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. doi:10.1007/s00253-008-1760-3

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wei M, Bingyu Z, Feng L (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

    Article  CAS  Google Scholar 

  • López-Bucio J, Acevedo-Hernández G, Ramírez-Chávez E, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–9. doi:10.1016/j.pbi.2006.07.002

    Article  PubMed  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217. doi:10.1094/MPMI-20-2-0207

    Article  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Nat Acad Sci USA 100:1444–1449. doi:10.1073_pnas.262672599

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Olofsson A, Fagerlind M, Fagerström TE, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the AHL regulatory system in a model biofilm system: How many bacteria constitute a “quorum”? J Mol Biol 309:631–640. doi:10.1006/jmbi.2001.4697

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Pant Cell Environ 31:1497–1509. doi:10.1111/j.1365-3040.2008.01863.x

    Article  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi:10.1128/AEM.68.8.3795-3801.2002

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, David P, Sarrobert C, Thibaud MC, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198. doi:10.1007/s004250000384

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199. doi:10.1046/j.1365-3040.2003.00956.x

    Article  CAS  Google Scholar 

  • Russelle M (2001) Alfalfa Am Sci 89:252–259. doi:10.1511/2001.3.252

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie A (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond Biol Sci 362:1149–1163. doi:10.1098/rstb.2007.2041

    Article  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. doi:10.1094/MPMI.2000.13.6.637

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza LE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273, doi:10.1007/s11104-007-9191-y

    Article  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Biol Sci 362:1119–1134. doi:10.1098/rstb.2007.2039

    Article  CAS  Google Scholar 

  • Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Nat Acad Sci USA 105:12164–12169, doi:10.1073/pnas.0802518105

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo S, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. doi:10.1007/s00425-007-0530-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. doi:10.1111/j.1365-313X.2009.03803.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Consejo Nacional de Ciencia y Tecnología, México (grant 60999) and Coordinación de la Investigación Científica-Universidad Michoacana de San Nicolás de Hidalgo (Grant 2.22) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Valencia-Cantero.

Additional information

Responsible Editor: Jorge Vivanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental fig. S1

Comparative structure of dimethylhexadecylamine and related compounds that modulate plant development and root architecture in plants. (a) N-dodecanoyl-homoserine lactone from bacteria, (b) N-isobutyl decanamide from plants, and (c) dimethylhexadecylamine from bacteria (JPEG 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Becerra, C., Macías-Rodríguez, L.I., López-Bucio, J. et al. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339, 329–340 (2011). https://doi.org/10.1007/s11104-010-0583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0583-z

Keywords

Navigation