Skip to main content

Advertisement

Log in

Effects of plant species richness and evenness on soil microbial community diversity and function

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by Ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38:471–495

    Article  CAS  PubMed  Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol Evol Syst 7:27–49

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bever JD (2003) Soil Community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  • Bezemer TM, Lawson CS, Hedlund K, Edwards AR, Brook AJ, Igual JM, Mortimer SR, Van Der Putten WH (2006) Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J Ecol 94:893–904

    Article  CAS  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  CAS  PubMed  Google Scholar 

  • Cahill JF Jr, McNickle GG, Haag JJ, Lamb EG, Nyanumba SM, St. Clair CC (2010) Plants integrate information about nutrients and neighbors. Science 328:1657

    Article  CAS  PubMed  Google Scholar 

  • Cenciarini-Borde C, Courtois S, La Scola B (2009) Nucleic acids as viability markers for bacteria detection using molecular tools. Future Microbiol 4:45–64

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Chang Biol 13:980–989

    Article  Google Scholar 

  • Coolen MJL, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK, Sinninghe Damsté JS (2004) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35:1151–1167

    Article  CAS  Google Scholar 

  • Coupland RT, Brayshaw TC (1953) The fescue grassland in Saskatchewan. Ecology 34:386–405

    Article  Google Scholar 

  • de Deyn GB, Quirk H, Bardgett RD (2010) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett. doi:10.1098/rsbl.2010.0575

  • Delgado-Viscogliosi P, Solignac L, Delattre J-M (2009) Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl Environ Microbiol 75:3502–3512

    Article  CAS  PubMed  Google Scholar 

  • Dell CJ, Rice CW (2005) Short-term competition for ammonium and nitrate in tallgrass prairie. Soil Sci Soc Am J 69:371–377

    Article  CAS  Google Scholar 

  • Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais ACW, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    Article  CAS  PubMed  Google Scholar 

  • Fogel GB, Collins CR, Li J, Brunk CF (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 38:93–113

    Article  CAS  PubMed  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56

    Article  CAS  Google Scholar 

  • Gillman LN, Wright SD (2006) The influence of productivity on the species richness of plants: a critical assessment. Ecology 87:1234–1243

    Article  PubMed  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, UK

    Book  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  Google Scholar 

  • Grüter D, Schmid B, Brandl H (2006) Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol 6:68

    Article  PubMed  Google Scholar 

  • He JS, Wolfe-Bellin KS, Schmid B, Bazzaz FA (2005) Density may alter diversity–productivity relationships in experimental plant communities. Basic Appl Ecol 6:505–517

    Article  Google Scholar 

  • Hedlund K, Santa Regina I, Van der Putten WH, Lepš J, Diaz T, Korthals GW, Lavorel S, Brown VK, Gormsen D, Mortimer SR, Rodriguez Barrueco C, Roy J, Smilauer P, Smilauerová M, Van Dijk C (2003) Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103:45–58

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc R Soc Lond B Biol Sci 271:113–122

    Article  Google Scholar 

  • Inglis GD, McAllister TA, Larney FJ, Topp E (2010) Prolonged survival of Campylobacter species in bovine manure compost. Appl Environ Microbiol 76:1110–1119

    Article  CAS  PubMed  Google Scholar 

  • Isbell FI, Polley HW, Wilsey BJ (2009) Species interaction mechanisms maintain grassland plant species diversity. Ecology 90:1821–1830

    Article  PubMed  Google Scholar 

  • Jon N (2004) Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol Oceanogr 49:1269–1277

    Article  Google Scholar 

  • Jones DL, Shannon D, Murphy D, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63:372–382

    Article  CAS  PubMed  Google Scholar 

  • Kirwan L, Scher A, Sebasti TM, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsd TS, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Glind M, Huguenin-Elie O, Iliadis C, Rgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Lamb EG (2008) Direct and indirect control of species richness and evenness by litter, resources, and neighbor biomass in a native grassland. Ecology 89:216–225

    Article  PubMed  Google Scholar 

  • Levang-Brilz N, Biondini ME (2003) Growth rate, root development and nutrient uptake of 55 plant species from the Great Plains Grasslands, USA. Plant Ecol 165:117–144

    Article  Google Scholar 

  • Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biol Biochem 38:2336–2343

    Article  CAS  Google Scholar 

  • Maestre FT, Reynolds JF (2006) Spatial heterogeneity in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Glob Chang Biol 12:2431–2441

    Article  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  • Mattingly WB, Hewlate R, Reynolds HL (2007) Species evenness and invasion resistance of experimental grassland communities. Oikos 116:1164–1170

    Article  Google Scholar 

  • Milcu A, Partsch S, Langel R, Scheu S (2006) The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos 112:513–524

    Article  Google Scholar 

  • Mills DK, Fitzgerald K, Litchfield CD, Gillevet PM (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods 54:57–74

    Article  CAS  PubMed  Google Scholar 

  • Mintie AT, Heichen RS, Cromack K Jr, Myrold DD, Bottomley PJ (2003) Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade Mountains. Appl Environ Microbiol 69:3129–3136

    Article  CAS  PubMed  Google Scholar 

  • Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CA, Ouborg NJ, Bögemann GM, van der Weerden GM, Berendse F, de Kroon H (2010) Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–1127

    Article  Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63

    Article  Google Scholar 

  • Nijs I, Roy J (2000) How important are species richness, species evenness and interspecific differences to productivity? A mathematical model. Oikos 88:57–66

    Article  Google Scholar 

  • Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792

    Article  CAS  PubMed  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  CAS  PubMed  Google Scholar 

  • Orwin KH, Wardle DA (2005) Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant Soil 278:205–221

    Article  CAS  Google Scholar 

  • Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580–593

    Article  PubMed  Google Scholar 

  • Osborne CA, Rees GN, Bernstein Y, Janssen PH (2006) New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Appl Environ Microbiol 72:1270–1278

    Article  CAS  PubMed  Google Scholar 

  • Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    CAS  PubMed  Google Scholar 

  • Park H-D, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647

    Article  CAS  PubMed  Google Scholar 

  • Pisz JM, Lawrence JR, Schafer AN, Siciliano SD (2007) Differentiation of genes extracted from non-viable versus viable micro-organisms in environmental samples using ethidium monoazide bromide. J Microbiol Methods 71:312–318

    Article  CAS  PubMed  Google Scholar 

  • Pucheta E, Bonamici I, Cabido M, Diaz S (2004) Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecol 29:201–208

    Article  Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wilsey BJ, Potvin C (2000) Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81:887–892

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowles CM, Willig MR (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Kraus TEC, Dahlgren RA, Horwath WR, Zasoski RJ (2003) Mineral and dissolved organic nitrogen dynamics along a soil acidity–fertility gradient. Soil Sci Soc Am J 67:878–888

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2052

    Article  Google Scholar 

  • Zul D, Denzel S, Kotz A, Overmann J (2007) Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microbiol 73:6916–6929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by an NSERC post-doctoral fellowship to EGL and an NSERC Discovery grant to SDS. We would like to thank Lissa de Freitas, Jola Pisz, Cindi Nelson, and Wai Ma for technical assistance. Gord McNickle, J.C. Cahill, Keith Egger and four anonymous reviewers provided helpful comments on this manuscript. Paul Grogan of Queens University performed the DOC and TDN analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric G. Lamb.

Additional information

Responsible Editor: Gerlinde De Deyn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary methods and figures detailing the relationships between mesocosm plant community composition and plant species richness, evenness, density, functional group composition, and harvest plant evenness. Supplementary tables include variable ranges and transformations, detailed structural equation model results, and variance–covariance matrices of the data reported in this paper. (DOC 182 kb)

ESM 2

A spreadsheet containing the raw data and accompanying metadata used in this study is also provided. (XLS 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, E.G., Kennedy, N. & Siciliano, S.D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil 338, 483–495 (2011). https://doi.org/10.1007/s11104-010-0560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0560-6

Keywords

Navigation