Plant and Soil

, Volume 340, Issue 1–2, pp 25–33 | Cite as

15N fractionation between vegetation, soil, faeces and wool is not influenced by stocking rate

  • Maximilian H. O. M. Wittmer
  • Karl Auerswald
  • Philipp Schönbach
  • Yongfei Bai
  • Hans Schnyder
Regular Article


Understanding stable isotope fractionation in trophic networks is important for the interpretation of stable isotope composition of ecosystem components. This work explores the influence of grazing pressure on the nitrogen isotope composition (δ 15N) of vegetation (standing biomass), soil, and sheep’s faeces and wool in a three-years (2005–2007) experiment with different stocking rates (0.375–2.25 sheep ha-1 year-1) in semi-arid Inner Mongolia grassland. The 15N of wool (from a yearly shearing) reflects vegetation at the whole-year grazing grounds-scale while faeces reflect that of the area grazed within a few days. Stocking rate had no effect on δ 15N of vegetation and soil, and sheep’s faeces and wool, although nitrogen content of bulk vegetation increased with stocking rate. Furthermore, δ 15N of vegetation and diet did not differ between stocking rates. Hence, 15N fractionations between vegetation and faeces (εveg-faeces), vegetation and wool (ε veg-wool), faeces and soil (ε faeces-soil) and soil and vegetation (ε soil-veg) were constants, with ε veg-faeces = 3.0‰ (±0.1‰, 95% confidence interval), ε veg-wool = 5.3‰ (±0.1‰), ε faeces-soil = 1.1‰ (±0.4‰) and ε soil-veg = -4.1‰ (±0.3‰). This finding is useful as it means that δ 15N of wool or faeces can be used to estimate the 15N of grazed vegetation, even if grazing pressure is unknown.


15-N Enrichment Trophic shift Diet C/N ratio Plant-animal-soil system Cycling 



This research was funded by the Deutsche Forschungsgemeinschaft within the Forschungsgruppe 536 MAGIM. We thank Dr. K. Müller, Dr. T. Glindemann and H. Yang for providing samples and M. Michler and A. Schmidt for assistance with sample preparation. Dr. R. Schäufele is thanked for assistance with isotope analysis.


  1. Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol Oceanogr 45:601–607CrossRefGoogle Scholar
  2. Amundson R, Austin AT, Schuur EAG et al. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cy 17:1013CrossRefGoogle Scholar
  3. Auerswald K, Wittmer MHOM, Männel TT, Bai YF, Schäufele R, Schnyder H (2009) Large regional-scale variation in C3/C4 distribution pattern of Inner Mongolia grassland is revealed by grazer wool carbon isotope composition. Biogeosciences 6:795–805CrossRefGoogle Scholar
  4. Auerswald K, Mayer F, Schnyder H (2010) Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr Cycl Agroecosys. doi: 10.1007/s10705-009-93621-4 Google Scholar
  5. Augustine DJ, Frank DA (2001) Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82:3149–3162CrossRefGoogle Scholar
  6. Augustine DJ, McNaughton SJ, Frank DA (2003) Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol Appl 13:1325–1337CrossRefGoogle Scholar
  7. Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effect in the Inner Mongolia grassland. Nature 431:181–184CrossRefPubMedGoogle Scholar
  8. Burke IC (1999) Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2:422–438CrossRefGoogle Scholar
  9. Cerling TE, Wittemyer G, Ehleringer JR, Remien CH, Douglas-Hamilton I (2009) History of animals using isotope records (HAIR): A 6-year dietary history of one family of African elephants. Proc Natl Acad Sci USA 106:8093–8100PubMedGoogle Scholar
  10. Chen S, Bai Y, Lin G, Huang J, Han X (2007) Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. J Arid Environ 71:12–28CrossRefGoogle Scholar
  11. Cheng WX, Chen QS, Xu YQ, Han XG, Li LH (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Global Biogeochem Cy 23:GB2005. doi: 10.1029/2008GB003315
  12. Craine JM, Ballantyne F, Peel M, Zambatis N, Morrow C, Stock WD (2009a) Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral Ecol 34:731–740CrossRefGoogle Scholar
  13. Craine JM, Elmore AJ, Aidar MPM et al (2009b) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992CrossRefPubMedGoogle Scholar
  14. De Niro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Act 45:341–351CrossRefGoogle Scholar
  15. Del Rio CM, Wolf BO (2005) Mass balance models for animal isotope ecology. In: Starck MA, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science, Enfield, pp 141–174Google Scholar
  16. Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299CrossRefGoogle Scholar
  17. Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands—evidence from δ15N of soils. Oecologia 94:314–317CrossRefGoogle Scholar
  18. Fernandez-Gimenez M, Allen-Diaz B (2001) Vegetation change along gradients from water sources in three grazed Mongolian ecosystems. Plant Ecol 157:101–118CrossRefGoogle Scholar
  19. Frank DA, Evans RD (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78:2238–2248CrossRefGoogle Scholar
  20. Frank DA, Evans RD, Tracy BF (2004) The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 68:169–178CrossRefGoogle Scholar
  21. Grant SA, Suckling DE, Smith HK, Torvell L, Forbes TDA, Hodgson J (1985) Comparative studies of diet selection by sheep and cattle: the hill grasslands. J Ecol 73:987–1004CrossRefGoogle Scholar
  22. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326CrossRefGoogle Scholar
  23. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  24. Holst J, Liu CY, Brüggemann N et al. (2007) Microbial N turnover and N-oxide (N2O / NO / NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems 10:623–634CrossRefGoogle Scholar
  25. Kerley SJ, Jarvis SC (1996) Preliminary studies of the impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotope discrimination. Plant Soil 178:287–294CrossRefGoogle Scholar
  26. Kahmen A, Wanek W, Buchmann N (2008) Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along temperate grassland gradients. Oecologia 156:861–870CrossRefPubMedGoogle Scholar
  27. Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang SP (2005) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agr Ecosyst Environ 107:83–93CrossRefGoogle Scholar
  28. Kohzu A, Iwata T, Kato M, Nishikawa J, Wada E, Amartuvshin N, Namkhaidorj B, Fujita N (2009) Food webs in Mongolian grasslands: the analysis of C-13 and N-15 natural abundances. Isot Environ Health Stud 45:208–219CrossRefGoogle Scholar
  29. Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grassland pastures. Plant Soil 141:137–153CrossRefGoogle Scholar
  30. Liang C, Michalk DL, Millar GD (2002) The ecology and growth patterns of Cleistogenes species in degraded grassland of eastern Inner Mongolia, China. J Appl Ecol 39:584–594CrossRefGoogle Scholar
  31. Liu Y (1993) A study on the dynamic features of nutritive materials in Inner Mongolia steppe. Grasslands in China 4:16–20Google Scholar
  32. Lu CD (1988) Grazing behaviour and diet selection of goats. Small Ruminant Res 1:205–216CrossRefGoogle Scholar
  33. Ma XZ, Wang SP, Jiang GM, Haneklaus S, Schnug E, Nyren P (2007) Short-term effect of targeted placements of sheep excrement on grassland in Inner Mongolia on soil and plant parameters. Commun Soil Sci Plant Anal 38:1589–1604CrossRefGoogle Scholar
  34. Handley LL, Odee D, Scrimgeour CM (1994) δ15N and δ13C patterns in savanna vegetation—dependence on water availability and disturbance. Fun Ecol 8:306–314CrossRefGoogle Scholar
  35. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principle; illustration for the denitrification and nitrification process. Plant Soil 62:413–430CrossRefGoogle Scholar
  36. Mattson WJ (1980) Herbivory in relation to plant nitrogen. Ann Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  37. Männel TT, Auerswald K, Schnyder H (2007) Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob Ecol Biogeogr 16:583–592CrossRefGoogle Scholar
  38. Pearson SF, Levey DJ, Greenberg CH, Del Rio CM (2003) Effects of elemental composition in the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523PubMedGoogle Scholar
  39. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN: 3-900051-07-0,
  40. Robbins CT, Felicetti LA, Sponheimer M (2005) The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144:534–540CrossRefPubMedGoogle Scholar
  41. Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162CrossRefPubMedGoogle Scholar
  42. Sachs L, Hedderich J (2006) Angewandte Statistik—Methodensammlung mit R. Springer, BerlinGoogle Scholar
  43. Schnyder H, Locher F, Auerswald K (2010) Nutrient cycling by grazing cattle controls soil N and P patterns and vegetation nutrient status in a low-input pasture ecosystem. Nutr Cycl Agroecosys. doi: 10.1007/s10705-009-9334-z Google Scholar
  44. Schwertl M, Auerswald K, Schnyder H (2003) Reconstructing the isotopic history of animal diets by hair segmental analysis. Rapid Commun Mass Sp 17:1312–1318CrossRefGoogle Scholar
  45. Schwertl M, Auerswald K, Schäufele R, Schnyder H (2005) Carbon and nitrogen stable isotope composition of cattle hair: ecological fingerprints of productions systems? Agr Ecosyst Environ 109:153–165CrossRefGoogle Scholar
  46. Sponheimer M, Robinson TF, Roeder BL et al. (2003a) An experimental study of nitrogen flux in llamas: is 14N preferentially excreted? J Archeol Sci 30:1649–1655CrossRefGoogle Scholar
  47. Sponheimer M, Robinson T, Ayliffe L et al (2003b) Nitrogen isotopes in mammalian herbivores: hair δ 15N values from a controlled feeding study. Int J Osteoarchaeol 13:80–87CrossRefGoogle Scholar
  48. Stevens RJ, Laughlin RJ (1998) Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr Cycl Agroecosyst 52:131–139CrossRefGoogle Scholar
  49. Sutoh M, Koyama T, Yoneyama T (1987) Variations of natural 15N abundance in the tissues and digesta of domestic animals. Radioisotopes 36:74–77PubMedGoogle Scholar
  50. Sutoh M, Obara Y, Yoneyama T (1993) The effects of feeding regime and dietary sucrose supplementation on natural abundance of 15N in some components of ruminal fluid and plasma of sheep. J Anim Sci 71:226–231PubMedGoogle Scholar
  51. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ 15N enrichment: a meta analysis. Oecologia 136:169–182CrossRefPubMedGoogle Scholar
  52. Van Soest PJ (1994) Nutritional ecology of the ruminant. Comstock, New YorkGoogle Scholar
  53. Watzka M, Buchgraber K, Wanek W (2006) Natural 15N abundance of plants and soils under different management practices in a montane grassland. Soil Biol Biochem 38:1564–1576CrossRefGoogle Scholar
  54. Weston RH (1988) Factors limiting the intake of feed by sheep. XII Digesta load and chewing activities in relation to lactation and its attendant increase in voluntary roughage consumption. Aust J Agric Res 39:671–677CrossRefGoogle Scholar
  55. Wittmer MHOM, Auerswald K, Schönbach P et al. (2010) Do grazer hair and faeces reflect the carbon isotope composition of semi-arid C3/C4 grasslands? Basic Appl Ecol 11:83–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maximilian H. O. M. Wittmer
    • 1
  • Karl Auerswald
    • 1
  • Philipp Schönbach
    • 2
  • Yongfei Bai
    • 3
  • Hans Schnyder
    • 1
  1. 1.Lehrstuhl für GrünlandlehreTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Institut für Pflanzenbau und PflanzenzüchtungChristian-Albrechts-Universität zu KielKielGermany
  3. 3.State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations