Plant and Soil

, Volume 321, Issue 1–2, pp 189–212 | Cite as

The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors

  • M. Buée
  • W. De Boer
  • F. Martin
  • L. van Overbeek
  • E. Jurkevitch
Review Article


Rhizosphere microorganisms have two faces, like Janus the Roman god of gates and doors who symbolizes changes and transitions, from one condition to another. One face looks at the plant root, the other sees the soil. The ears and the nose sense the other gods around and the mouths are wide open, swallowing as much as they can, and as described in Chapter 11, they also are busy talking. These faces may as well represent Hygieia (the Greek god of Health and Hygiene, the prevention of sickness and the continuation of good health) and Morta (the Roman god of death) for rhizosphere microbes can be beneficial, and promote plant growth and well being (Chapter 12) or detrimental, causing plant sickness and death (Chapter 13). It can be argued that many rhizosphere microbes are “neutral”, faceless saprophytes that decompose organic materials, perform mineralization and turnover processes. While most may not directly interact with the plant, their effects on soil biotic and abiotic...


  1. Alvey S, Yang CH, Buerkert A, Drowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils. Biol Fertil Soil 37:73–82Google Scholar
  2. Andreote FD, Araújo WL, Azevedo JL, Van Elsas JD, Van Overbeek L (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and the effect on associated bacterial communities. Appl Environ Microbiol. doi: 10.1128/AEM.00491-09
  3. Appuhn A, Joergensen RG (2006) Microbial colonization of roots as a function of plant species. Soil Biol Biochem 38:1040–1051CrossRefGoogle Scholar
  4. Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289PubMedCrossRefGoogle Scholar
  5. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  6. Baum C, Hrynkiewicz K (2006) Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizopshere of Salix spp. J Plant Nutr 169:481–487CrossRefGoogle Scholar
  7. Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338PubMedCrossRefGoogle Scholar
  8. Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213PubMedCrossRefGoogle Scholar
  9. Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. PNAS 94:277–282PubMedCrossRefGoogle Scholar
  10. Bohannan BJM, Kerr B, Jessup CM, Hughes JB, Sandvik G (2002) Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek 81:107–115PubMedCrossRefGoogle Scholar
  11. Bomberg M, Jurgens G, Saan A, Sen R, Timonen S (2003) Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiol Ecol 43:163–171CrossRefPubMedGoogle Scholar
  12. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: Evidence for unusual microorganism and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653PubMedGoogle Scholar
  13. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744PubMedCrossRefGoogle Scholar
  14. Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765PubMedCrossRefGoogle Scholar
  15. Bruns T, Arnold AE, Hughes K (2008) Fungal networks made of humans: UNITE, FESIN and frontiers in fungal ecology. New Phytol 177:586–588PubMedGoogle Scholar
  16. Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech Fagus silvatica forest subjected to two thinning regimes. Mycorrhiza 15:235–245PubMedCrossRefGoogle Scholar
  17. Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955CrossRefGoogle Scholar
  18. Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800PubMedCrossRefGoogle Scholar
  19. Cairney JWG, Meharg AA (2002) Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot 80:803–809CrossRefGoogle Scholar
  20. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M-L, Brussow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424PubMedCrossRefGoogle Scholar
  21. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis. Appl Environ Microbiol 72:1258–1266PubMedCrossRefGoogle Scholar
  22. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedCrossRefGoogle Scholar
  23. Courty PE, Franc A, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal community on two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801PubMedCrossRefGoogle Scholar
  24. Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea may.s L. Microb Ecol 41:252–163PubMedGoogle Scholar
  25. Chen X, Zhu YG, Xia Y, Shen J-P, He J-Z (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987PubMedCrossRefGoogle Scholar
  26. Chow M, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357CrossRefPubMedGoogle Scholar
  27. Coenye T, Vandamme P, Govan JRW, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436PubMedCrossRefGoogle Scholar
  28. Cohan FM, Perry EB (2007) Systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386PubMedCrossRefGoogle Scholar
  29. Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chan Biol 14:657–669CrossRefGoogle Scholar
  30. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249PubMedCrossRefGoogle Scholar
  31. Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11(1):159–175PubMedCrossRefGoogle Scholar
  32. Curl EA, Truelove B (1986) The rhizosphere. Springer, New YorkGoogle Scholar
  33. Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284PubMedCrossRefGoogle Scholar
  34. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Ecol 29:795–811Google Scholar
  35. De Boer W, Kowalchuk GA, van Veen JA (2006) ‘Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3–6PubMedCrossRefGoogle Scholar
  36. De Boer W, de Ridder-Duine AS, Klein Gunnewiek PJA, Smant W, van Veen JA (2008) Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biol Biochem 40:1542–1544CrossRefGoogle Scholar
  37. Denef K, Bubenheim H, Lenhart K, Vermeulen J, van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779Google Scholar
  38. Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepecia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493PubMedGoogle Scholar
  39. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535CrossRefGoogle Scholar
  40. Duineveld MD, Rosado AS, Van Elsas JD, Van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957PubMedGoogle Scholar
  41. Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified Canola (Brassica napus). Appl Environ Microbiol 69:7310–7318PubMedCrossRefGoogle Scholar
  42. Elsherif M, Grossmann F (1996) Role of biotic factors in the control of soil-borne fungi by fluorescent pseudomonads. Microbiol Res 151:351–357Google Scholar
  43. Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice Cluster I Archaea–the key methane producers in the rice rhizosphere. Science 313:370–372PubMedCrossRefGoogle Scholar
  44. Filion M, Hamelin RC, Bernier L, St-Arnaud M (2004) Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol 70:3541–3551PubMedCrossRefGoogle Scholar
  45. Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502CrossRefGoogle Scholar
  46. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  47. Friend T (2007) The Third Domain. Joseph Henry Press, Washington, DCGoogle Scholar
  48. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548PubMedCrossRefGoogle Scholar
  49. Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910PubMedCrossRefGoogle Scholar
  50. Gadd GM (2007) Geomycology: biogeochemical transformatins of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  51. Gochnauer MB, McCully ME, Labbé H (1989) Different populations of bacteria associated with sheathed and bare regions of roots of field-grown maize. Plant Soil 114:107–120CrossRefGoogle Scholar
  52. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  53. Garbeva P, Voesenek K, Van Elsas JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463CrossRefGoogle Scholar
  54. Genney DR, Anderson IC, Alexander IJ (2005) Fine-scale distribution of pine extomycorrhizas and their extrametrical mycelium. New Phytol 170:381–390CrossRefGoogle Scholar
  55. Goodman RM, Bintrim SB, Handelsman J, Quirino BF, Rosas JC, Simon HM, Smith KP (1998) A dirty look: soil microflora and rhizosphere microbiology. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, pp 219–231Google Scholar
  56. Gramms G, Bergmann H (2008) Role of plants in the vegetative and reproductive growth of saprobic basidiomycetous ground fungi. Microbiol Ecol 56(4):660–670CrossRefGoogle Scholar
  57. Grandmougin-Ferjani A, Delpé Y, Hartmann M-A, Laruelle F, Sancholle M (1999) Strerol distribution in arbuscular mycorrhizal fungi. Phytochem 50:1027–1031CrossRefGoogle Scholar
  58. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem. 30:369–378CrossRefGoogle Scholar
  59. Green SJ, Inbar E, Michel FC, Jr HY, Minz D (2006) Succession of bacterial communities during early plant development: Transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983PubMedCrossRefGoogle Scholar
  60. Gremion F, Chatzinotas A, Harms H (2003) Comparative 16 S rDNA and 16 S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907PubMedCrossRefGoogle Scholar
  61. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153CrossRefGoogle Scholar
  62. Gu Y-H, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72CrossRefGoogle Scholar
  63. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56CrossRefGoogle Scholar
  64. Henn MR, Chapela IH (2001) Ecophysiology of C-13 and N-15 isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128:480–487CrossRefGoogle Scholar
  65. Herrmann M, Saunders AM, Schramm A (2008) Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 74:3279–3283PubMedCrossRefGoogle Scholar
  66. Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant growth promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288PubMedCrossRefGoogle Scholar
  67. Hobbie EA, Horton TR (2007) Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytol 173:447–449PubMedCrossRefGoogle Scholar
  68. Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201PubMedCrossRefGoogle Scholar
  69. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  70. Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335PubMedCrossRefGoogle Scholar
  71. Houweling S, Kaminski T, Dentener F, Lelieveld J, Heimann M (1999) Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J Geophys Res 104:26137–26160CrossRefGoogle Scholar
  72. Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of Streptomycetes. Microb Ecol 50:73–81PubMedCrossRefGoogle Scholar
  73. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440PubMedCrossRefGoogle Scholar
  74. Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630PubMedCrossRefGoogle Scholar
  75. Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74:3121–3129PubMedCrossRefGoogle Scholar
  76. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396PubMedCrossRefGoogle Scholar
  77. Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp in relation to soil water potential in five beech forests. Plant Soil 255:487–494CrossRefGoogle Scholar
  78. Jia Z, Ishihara R, Nakajima Y, Asakawa S, Kimura M (2007) Molecular characterization of T4-type bacteriophages in a rice field. Environ Microbiol 9:1091–1096PubMedCrossRefGoogle Scholar
  79. Joergensen RG (2000) Ergosterol and microbial biomass in the rhizopshere of grassland soils. Soil Biol Biochem 32:647–652CrossRefGoogle Scholar
  80. Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L). Microb Ecol 43:298–306PubMedCrossRefGoogle Scholar
  81. Julou T, Burhardt B, Gebauer G, Berviller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytol 166:639–653PubMedCrossRefGoogle Scholar
  82. Jurgens GLK, Saano A (1997) Novel group within the kingdom Crenarcheota from boreal forest soil. Appl Environ Microbiol 63:803–805PubMedGoogle Scholar
  83. Jurkevitch E (2007) A brief history of short bacteria: a chronicle of Bdellovibrio (and like organisms) research. In: Jurkevitch E (ed) Predatory Prokaryotes - Biology, ecology, and evolution. 2007. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  84. Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149PubMedGoogle Scholar
  85. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236PubMedCrossRefGoogle Scholar
  86. Kimura M, Jia Z-J, Nakaya N, Asakawa S (2008) Ecology of viruses in soils: Past, present and future perspectives. Soil Sci Plant Nut 54:1–32Google Scholar
  87. Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168PubMedCrossRefGoogle Scholar
  88. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, Van Pée K-H, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943PubMedGoogle Scholar
  89. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhoh G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedCrossRefGoogle Scholar
  90. Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J 3:378–382PubMedCrossRefGoogle Scholar
  91. Koide RT, Shumway DL, Xu B, Sharda JN (2007a) On temporal partinioning of a community of ectomycorrhizal fungi. New Phytol 74:420–429CrossRefGoogle Scholar
  92. Koide R, Courty P-E, Garbaye J (2007b) Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytol 174:240–243PubMedCrossRefGoogle Scholar
  93. Koljalg U, Larsson KH, Abarenkov K et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068PubMedCrossRefGoogle Scholar
  94. Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824PubMedCrossRefGoogle Scholar
  95. Landeweert R, Hoffland E, Finlay RD, Kuyper T, van Breemen N (2001) Linking plants to rocks ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254PubMedCrossRefGoogle Scholar
  96. Landeweert R, Veeman C, Kuyper T, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292CrossRefPubMedGoogle Scholar
  97. Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456PubMedGoogle Scholar
  98. Lee MS, Do JO, Park MS, Jung S, Lee KH, Bae KS, Park SJ, Kim SB (2006) Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species. Calystegia soldanella and Elymus mollis Antonie van Leeuwenhoek 90:19–27CrossRefGoogle Scholar
  99. Lee S-H, Ka J-O, Cho J-E (2008) Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263–269PubMedCrossRefGoogle Scholar
  100. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809PubMedCrossRefGoogle Scholar
  101. Lerner A, Herschkovitz Y, Baudoin E, Nazaret S, Moënne-Loccoz Y, Okon Y, Jurkevitch E (2006) Effect of Azospirillum brasilense on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated intergenic spacer analysis. Soil Biol Biochem 38:1212–1218CrossRefGoogle Scholar
  102. Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231CrossRefGoogle Scholar
  103. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  104. Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377CrossRefGoogle Scholar
  105. Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090PubMedCrossRefGoogle Scholar
  106. Lueders T, Wagner B, Claus P, Friedrich MW (2004) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6:60–72PubMedCrossRefGoogle Scholar
  107. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741CrossRefGoogle Scholar
  108. Lynch JM, Hobbie JE (1988) The terrestrial environment. In: Lynch JM, Hobbie JE (eds) Microorganisms in action: concepts and application in microbial ecology. Blackwell Scientific Publications, Oxford, GB, pp 103–131Google Scholar
  109. Marcial Gomes NC, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766CrossRefGoogle Scholar
  110. Markelova NY, Kershentsev AS (1998) Isolation of a new strain of the genus Bdellovibrio from plant rhizosphere and its lytic spectrum. Microbiologya 67:837–841Google Scholar
  111. Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136CrossRefGoogle Scholar
  112. Marschner P, Crowley DE, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208CrossRefGoogle Scholar
  113. Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Kohler A et al (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  114. McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community Structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730PubMedGoogle Scholar
  115. McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  116. Miller HJ, Henken G, Van Veen JA (1989) Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can J Microbiol 35:656–660Google Scholar
  117. Miller HJ, Liljeroth E, Henken G, Van Veen JA (1990) Fluctuations in the fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258CrossRefGoogle Scholar
  118. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncata Geartn. Cv. Jemalong line J5. New Phytol 170:165–175PubMedCrossRefGoogle Scholar
  119. Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M (2007) Seasonal variations in the abundance of virus-like particles and bacteria in the floodwater of a Japanese paddy field. Soil Sci Plant Nut 53:420–429CrossRefGoogle Scholar
  120. Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747CrossRefGoogle Scholar
  121. Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathol 55:207–216CrossRefGoogle Scholar
  122. Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351CrossRefGoogle Scholar
  123. Nicol G, Webster G, Glover AL, Prosser JI (2004) Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Environ Microbiol 6:861–867PubMedCrossRefGoogle Scholar
  124. Nijhuis EH, Maat MJ, Zeegers IWE, Waalwijk C, Van Veen JA (1993) Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol Biochem 25:885–895CrossRefGoogle Scholar
  125. Nilsson H, Kristiansson E, Ryberg M, Larsson H (2005) Approaching the taxonomic affiliation of unidentified sequences in public databases – an example from the mycorrhizal fungi. BMC Bioinf 6:178–185CrossRefGoogle Scholar
  126. Nilsson H, Kristiansson E, Ryberg M, Hallenberg N, Larsson H (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the internal sequence databases and its implications for molecular species identification. Evol Bioinfo 4:193–201Google Scholar
  127. Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66PubMedCrossRefGoogle Scholar
  128. Nouhra E, Horton T, Cazares E, Castellano M (2005) Morphological and molecular characterization of selected Ramaria mycorrhizae. Mycorrhiza 15:55–59PubMedCrossRefGoogle Scholar
  129. Nygren CM, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248PubMedCrossRefGoogle Scholar
  130. Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270CrossRefGoogle Scholar
  131. Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estaimation of mycorrhizal fungi. New Phytol 159:7–10CrossRefGoogle Scholar
  132. Ochsenreiter T, Seleki D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16 S RNA surveys and real time PCR. Environ Microbiol 5:787–797PubMedCrossRefGoogle Scholar
  133. Oved T, Shaviv A, Goldrath T, Mandelbaum R, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433PubMedCrossRefGoogle Scholar
  134. Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2006) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610CrossRefGoogle Scholar
  135. Payne G, Ramette A, Rose HL, Weightman AJ Hefin T, James J, Tiedje M, Mahenthiralingam E (2006) Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Let 259:126–132CrossRefGoogle Scholar
  136. Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151CrossRefGoogle Scholar
  137. Postma J, Schilder MT, Bloem J, Van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406CrossRefGoogle Scholar
  138. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Micro 4:837–848CrossRefGoogle Scholar
  139. Radajewski S, Philip I, Nisha P, Colin MJ (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedCrossRefGoogle Scholar
  140. Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186CrossRefGoogle Scholar
  141. Ramette A, LiPuma JJ, Tiedje JM (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 71:1193–1201PubMedCrossRefGoogle Scholar
  142. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance ? New Phytol 157:475–492CrossRefGoogle Scholar
  143. Reichenbach H (2001) The genus Lysobacter. In: Dworkin M et al (eds) The prokaryotes: An evolving electronic resource for the microbiological community. Springer-Verlag, New YorkGoogle Scholar
  144. Renker C, Blanke V, Börstler B, Heinrichs J, Buscot F (2004) Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res 4:597–603PubMedCrossRefGoogle Scholar
  145. Rosling A, Landerweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783CrossRefGoogle Scholar
  146. Schallmach E, Minz D, Jurkevitch E (2000) Culture-independent detection of shifts occurring in the structure of root-associated bacterial populations of common bean (Phaseolus vulgaris L) following nitrogen depletion. Microb Ecol 40:309–316PubMedGoogle Scholar
  147. Salles JF, Van Elsas JD, Van Veen JA (2006) Effect of Agricultural management regime on Burkholderia community structure in soil. Microbiol Ecol 52:267–279CrossRefGoogle Scholar
  148. Scherff RH (1973) Control of bacterial blight of soybean by Bdellovibrio bacteriovorus. Phytopathol 63:400–402Google Scholar
  149. Schrey D, Schellhammer M, Ecke M, Hampp R, Tarkka M (2005) Mycorrhizal helper bacterium Streptomyces AcH505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  150. Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)—linking of 16 S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Enviro Microbiol 66:3556–3565CrossRefGoogle Scholar
  151. Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868PubMedGoogle Scholar
  152. Semenov AM, van Bruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbiol Ecol 37:116–128CrossRefGoogle Scholar
  153. Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Tankouo, Sandjong B, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytologist 171:719–736PubMedCrossRefGoogle Scholar
  154. Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415PubMedCrossRefGoogle Scholar
  155. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent function and importance. Can J Bot 82:1140–1165CrossRefGoogle Scholar
  156. Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigeneous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520PubMedCrossRefGoogle Scholar
  157. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155CrossRefGoogle Scholar
  158. Sliwinski MK, Goodman RM (2004) Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70:1821–1826PubMedCrossRefGoogle Scholar
  159. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751PubMedCrossRefGoogle Scholar
  160. Smit E, Leeflang P, Glandorf B, van Elzas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18 S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621PubMedGoogle Scholar
  161. Stafford WHL, Baker GC, Brown SA, Burton SG, Cowan DA (2005) Bacterial diversity in the rhizosphere of Proteaceae species. Environ Microbiol 7:1755–1768PubMedCrossRefGoogle Scholar
  162. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphototrophic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346PubMedCrossRefGoogle Scholar
  163. Subke J-A, Hahn V, Battipaglia G, Linder S, Buchman N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–559PubMedCrossRefGoogle Scholar
  164. Suttle CA (2005) Viruses in the sea. Nature 437:356–361PubMedCrossRefGoogle Scholar
  165. Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165CrossRefGoogle Scholar
  166. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi I, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmania wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490PubMedCrossRefGoogle Scholar
  167. Timonen S, Marschner P (2005) Mycorrhizosphere concept. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer-Verlag, Berlin, pp 155–172Google Scholar
  168. Tiunov AV, Scheu S (2005) Arbuscular mycorrhiza and Collembola interact in affecting community compositionjof saprotrophic microfungi. Oecologia 142:636–642PubMedCrossRefGoogle Scholar
  169. Treonis AM, Ostleb NJ, Stotth AW, Primrosea R, Graystona SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537CrossRefGoogle Scholar
  170. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160:391–401CrossRefGoogle Scholar
  171. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa. Science 313:1596PubMedCrossRefGoogle Scholar
  172. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027PubMedCrossRefGoogle Scholar
  173. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Micro 5:316–323CrossRefGoogle Scholar
  174. Vandenkoornhuyse P, Mahé S, Ineson P, Staddon P, Ostle N, Cliquet J-B, Francez A-J, Fitter AH, Young PW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Nat Acad Sci 104:16970–16975PubMedCrossRefGoogle Scholar
  175. Van der Wal A, van Veen JA, Pijl AS, Summerbell RC, de Boer W (2006) Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biol Biochem 38:2890–2902CrossRefGoogle Scholar
  176. Van der Wal A, de Boer W, Smant W, van Veen JA (2007) Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant Soil 301:189–201CrossRefGoogle Scholar
  177. Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296PubMedCrossRefGoogle Scholar
  178. Van Elsas JD, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel T, Costa R, Van Overbeek L (2008a) The metagenomics of disease-suppressive soils - Experiences from the METACONTROL project. Trend Biotechnol 26(11):591–601CrossRefGoogle Scholar
  179. Van Elsas JD, Speksnijder AJ, Van Overbeek LS (2008b) A novel procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Meth 75(3):515–522CrossRefGoogle Scholar
  180. Van Wees SCM, van der Ent S, Pieterse CJM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  181. Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in the fine living roots of conifer seedlings. New Phytol 174:441–446PubMedCrossRefGoogle Scholar
  182. Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PAHM (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253PubMedCrossRefGoogle Scholar
  183. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  184. Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M (2007) Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea marina plants throughout nursery production chronosequences. Microbiol Ecol 54:672–684CrossRefGoogle Scholar
  185. Wallander H, Lindahl BD, Nilsson LO (2006) Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field. Mycorrhiza 16:213–217PubMedCrossRefGoogle Scholar
  186. Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491CrossRefGoogle Scholar
  187. Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Env Microbiol 8:871–884CrossRefGoogle Scholar
  188. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523PubMedCrossRefGoogle Scholar
  189. Weete JD (1989) Structure and function of sterols in fungi. Adv Lipid Res 23:115–167Google Scholar
  190. Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycologia 13:41–47Google Scholar
  191. Williamson KE, Radosevich M, Wommack E (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125PubMedCrossRefGoogle Scholar
  192. Woese C, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. PNAS 74:5088–5090PubMedCrossRefGoogle Scholar
  193. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damste J (2006) Archaeal nitrification in the ocean. PNAS 103:12317–12322PubMedCrossRefGoogle Scholar
  194. Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351PubMedCrossRefGoogle Scholar
  195. Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling along an Antarctic latitudinal gradient. ISME J 1:163–179PubMedCrossRefGoogle Scholar
  196. Zachow C, Tilcher R, Berg G (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55:119–129PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Buée
    • 1
  • W. De Boer
    • 2
  • F. Martin
    • 1
  • L. van Overbeek
    • 3
  • E. Jurkevitch
    • 4
  1. 1.UMR INRA-UHP, IFR 110, INRA-NancyChampenouxFrance
  2. 2.NIOO-KNAW, Centre for Terrestrial EcologyHeterenThe Netherlands
  3. 3.Plant Research InternationalWageningenThe Netherlands
  4. 4.Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations