Plant and Soil

, 324:103 | Cite as

A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex

  • Marianthi Tsakaldimi
  • Thekla Tsitsoni
  • Petros Ganatsas
  • Theocharis Zagas
Regular Article


We explored the different mechanisms developed by naturally regenerated seedlings of Quercus ilex L. (Holm oak) under Mediterranean conditions compared to container-seedlings commonly used in plantations. We examined the differences in root architecture (including topology and morphology) and shoot parameters. The results showed that there are many differences in the architecture of the root system as well as in the shoot morphology between the two types of seedlings. The naturally regenerated seedlings were smaller with regard to most of the shoot and root parameters, but they developed a longer taproot, only first order lateral roots, and presented a more herringbone-like root system compared to the container seedlings. Conversely, all types of container seedlings, were larger and had a more extended root system with many orders of lateral roots, while their taproot length was restricted within the container’s depth. The quotient log (α)/ log (μ) for all seedlings, showed a tendency to decrease with plant size. A strict herringbone root system with an elongated taproot may be the optimal root architecture for Quercus ilex L. seedlings in order to survive under Mediterranean conditions.


Drought adaptation Holm oak Mediterranean ecosystems Morphology Topology 


  1. Anderson TM, Starmer WT, Thorne M (2007) Bimodal root diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: implications for nitrogen uptake. Funct Ecol 21:50–60Google Scholar
  2. Berntson GM (1994) Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493. doi: 10.1111/j.1469-8137.1994.tb03966.x CrossRefGoogle Scholar
  3. Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634. doi: 10.1046/j.1469-8137.1997.00687.x CrossRefGoogle Scholar
  4. Chirino E, Vilagrosa A, Hernandez EI, Matos A, Vallejo VR (2008) Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For Ecol Manage 256:779–785. doi: 10.1016/j.foreco.2008.05.035 CrossRefGoogle Scholar
  5. Collet C, Lof M, Pages L (2006) Root system development of oak seedlings analyzed using an architectural model. Effects of competition with grass. Plant Soil 279:367–383. doi: 10.1007/s11104-005-2419-9 CrossRefGoogle Scholar
  6. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH (ed) Ecological Interactions in Soil: Plants, microbes and animals British ecological society, Special Publication No. 4. Blackwell Scientific, Oxford, pp 87–106Google Scholar
  7. Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77Google Scholar
  8. Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389. doi: 10.1111/j.1469-8137.1991.tb00019.x CrossRefGoogle Scholar
  9. Fitter AH, Nichols R, Harvey ML (1988) Root system architecture in relation to life history and nutrient supply. Funct Ecol 2:345–351. doi: 10.2307/2389407 CrossRefGoogle Scholar
  10. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency\. New Phytol 118:375–382. doi: 10.1111/j.1469-8137.1991.tb00018.x CrossRefGoogle Scholar
  11. Glimskar A (2000) Estimates of root system topology of five plant species grown at steady-state nutrition. Plant Soil 227:249–256. doi: 10.1023/A:1026531200864 CrossRefGoogle Scholar
  12. Green JJ, Vallejo R, Serrasolses I, Martins-Loucao MA, Hatzistathis A, Barea JM, Cortina J, Watson CA et al (1999) Restoration of degraded ecosystems in Meditarranean regions (REDMED). Grasslands and Woody Plants in Europe. HERPAS, Thessaloniki, pp 281–286Google Scholar
  13. Hatzistathis A, Zagas T, Ganatsas P, Tsitsoni T (1999) Experimental work on restoration techniques after wildfires in forest ecosystems in Chalkidiki, North Greece. In: Proceedings of the International Symposium “Forest fires: Needs and innovations”, Athens, Greece, Nov. 18–19, 1999, pp 310–315Google Scholar
  14. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24. doi: 10.1111/j.1469-8137.2004.01015.x CrossRefGoogle Scholar
  15. Kirchhof G, Pendar K (1993) Delta-T SCAN user manual. Delta-T Devices Ltd, Cambridge, EnglandGoogle Scholar
  16. Koutrakis E, Lazaridou E (1999) Description of the Coastal zone of “Strymonikos” and “Ierissos” Gulfs. Fisheries Research Institute and Greek Biotope/Wetland Centre, Thermi, GreeceGoogle Scholar
  17. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedGoogle Scholar
  18. Martinez-Sanchez JJ, Ferrandis P, Trabaud L, Galindo R, Franco JA, Herranz JM (2003) Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L. saplings. Plant Ecol 168:309–320. doi: 10.1023/A:1024406029497 CrossRefGoogle Scholar
  19. McPhee K (2005) Variation for seedling root architecture in the core collection of Pea germplasm. Crop Sci 45:1758–1763. doi: 10.2135/cropsci2004.0544 CrossRefGoogle Scholar
  20. Navarro Cerrillo RM, Fragueiro B, Ceaceros C, Campo A, Prado R (2005) Establishment of Quercus ilex L. subsp. Ballota [Desf.] Samp. using different weed control strategies in southern Spain. Ecol Eng 25:332–342. doi: 10.1016/j.ecoleng.2005.06.002 CrossRefGoogle Scholar
  21. Nicotra AB, Babicka N, Westoby M (2002) Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia 130:136–145Google Scholar
  22. Paz H (2003) Root/Shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats and ecological groups. Biotropica 35:318–332Google Scholar
  23. Pausas JG, Blade C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Villagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice-a review. Plant Ecol 171:209–220. doi: 10.1023/B:VEGE.0000029381.63336.20 CrossRefGoogle Scholar
  24. Peman J, Voltas J, Gil-Pelegrin E (2006) Morphological and functional variability in the root systems of Quercus ilex L. subject to confinement: consequences for afforestation. Ann For Sci 63:425–430. doi: 10.1051/forest:2006022 CrossRefGoogle Scholar
  25. Puerta-Piñero C, Gómez JM, Zamora R (2006) Species-specific effects on topsoil development affect Quercus ilex seedling performance. Acta Oecol 29:65–71. doi: 10.1016/j.actao.2005.07.007 CrossRefGoogle Scholar
  26. Retana J, Espelta JM, Gracia M, Riba M (1999) Seedling recruitment. In: Roda F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forests. Springer Verlag, Berlin, pp 89–101Google Scholar
  27. Rey Benayas JM, Camacho-Cruz A (2004) Performance of Quercus ilex saplings planted in abandoned Mediterranean cropland after long-term interruption of their management. For Ecol Manage 194:223–233. doi: 10.1016/j.foreco.2004.02.035 CrossRefGoogle Scholar
  28. Roumet C, Urcelay C, Diaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368. doi: 10.1111/j.1469-8137.2006.01667.x CrossRefPubMedGoogle Scholar
  29. Schultz RC, Thompson JR (1997) Effect of density control and undercutting on root morphology of 1 + 0 bareroot hardwood seedlings: five-year field performance of root-graded stock in the central USA. New For 13:301–314. doi: 10.1023/A:1006594510503 Google Scholar
  30. Sorgona A, Abenavoli MR, Cacco G (2005) A comparative study between two citrus rootstocks: effect of nitrate on the root morpho-topology and net nitrate uptake. Plant Soil 270:257–267. doi: 10.1007/s11104-004-1607-3 CrossRefGoogle Scholar
  31. Spanos I, Ganatsas P, Raftoyannis Y (2008) The root system architecture of young Greek fir (Abies cephalonica Loundon) trees. Plant Biosyst 142:1–6. doi: 10.1080/11263500802151082 Google Scholar
  32. Stewart JD, Lieffers VJ (1993) Preconditioning effects of nitrogen relative addition rate and drought stress on container-grown lodgepole pine seedlings. Can J For Res 23:1663–1671. doi: 10.1139/x93-207 CrossRefGoogle Scholar
  33. Tamasi E, Stokes A, Lasserre B, Danjon F, Berthier S, Fourcaud T, Chiatante D (2005) Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings. Trees Struct Func 19:374–384Google Scholar
  34. Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees (Berl) 20:334–339. doi: 10.1007/s00468-005-0045-z CrossRefGoogle Scholar
  35. Tsakaldimi M, Zagas T, Tsitsoni T, Ganatsas P (2005) Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant Soil 278:85–93. doi: 10.1007/s11104-005-2580-1 CrossRefGoogle Scholar
  36. Tsitsoni T (1997) Conditions determining natural regeneration after wildfires in the Pinus halepensis (Miller, 1768) forests of Kassandra Peninsula (North Greece). For Ecol Manage 92:199–208. doi: 10.1016/S0378-1127(96) 03909-6 CrossRefGoogle Scholar
  37. Tsitsoni T, Karagiannakidou V (2000) Site quality and stand stucture in Pinus halepensis forests of North Greece. Forestry 73:51–64. doi: 10.1093/forestry/73.1.51 CrossRefGoogle Scholar
  38. Valdecantos A, Cortina J, Vallejo R (2006) Nutrient status and field performance of tree seedlings planted in Mediterranean degraded areas. Ann For Sci 63:249–256. doi: 10.1051/forest:2006003 CrossRefGoogle Scholar
  39. Vallejo VR, Serrasolses I, Cortina J, Seva JP, Valdecantos A, Vilagrosa A (2000) Restoration strategies and actions in Mediterranean degraded lands. In: Enne G, Zanolla C, Peter D (eds) Desertification in Europe: mitigation strategies and land-use planning. Office for official publications of the European Communities, Luxenbourg, pp 221–233Google Scholar
  40. Vilagrosa A, Cortina J, Gil-Pelegrín E, Bellot J (2003) Suitability of Drought-Preconditioning Techniques in Mediterranean Climate. Restor Ecol 11:208–216. doi: 10.1046/j.1526-100X.2003.00172.x CrossRefGoogle Scholar
  41. Villar-Salvador P, Planelles R, Enriquez E, Penuelas-Rubira J (2004a) Nursery cultivation regimes, plant functional attributes and field performance relationships in the Mediterranean oak Quercus ilex L. For Ecol Manage 196:257–266. doi: 10.1016/j.foreco.2004.02.061 CrossRefGoogle Scholar
  42. Villar-Salvador P, Planelles R, Oliet J, Penuelas-Rubira J, Jacobs DF, Gonzalez M (2004b) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 24:1147–1155PubMedGoogle Scholar
  43. Werner C, Smart JS (1973) Some new methods of topologic classification of channel networks. Geogr Anal 5:271–295Google Scholar
  44. Wilson ER, Vitols KC, Park A (2007) Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada. New For 34:163–176. doi: 10.1007/s11056-007-9046-7 Google Scholar
  45. Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97. doi: 10.1046/j.1365-2745.1999.00330.x CrossRefGoogle Scholar
  46. Zagas TD, Ganatsas PP, Tsitsoni TK, Tsakaldimi M (2004) Thinning effect on stand structure of holm oak stand in northern Greece. In: Arianoutsou M, Papanastasis V (eds) Proceedings of 10th MEDECOS Conference. Rhodos, Greece, Millpress Rotterdam. April 25–May 1, 2004Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marianthi Tsakaldimi
    • 1
  • Thekla Tsitsoni
    • 1
  • Petros Ganatsas
    • 1
  • Theocharis Zagas
    • 1
  1. 1.Department of Silviculture, School of Forestry and Natural EnvironmentAristotle UniversityThessalonikiGreece

Personalised recommendations