Plant and Soil

, Volume 323, Issue 1–2, pp 31–44 | Cite as

Do chronic aboveground O3 exposure and belowground pathogen stress affect growth and belowground biomass partitioning of juvenile beech trees (Fagus sylvatica L.)?

  • J. Barbro Winkler
  • Frank Fleischmann
  • Sebastian Gayler
  • Hagen Scherb
  • Rainer Matyssek
  • Thorsten E. E. Grams
Regular Article


The impact of chronic free air ozone (O3) exposure and belowground pathogen stress on growth and total biomass development of young beech trees (Fagus sylvatica L.) was investigated in a lysimeter study. Plants were growing during four years under ambient or elevated atmospheric O3 concentrations. Additionally, in the last vegetation period the root rot pathogen Phytophthora citricola was introduced to study the interaction of ozone exposure and pathogen stress in the soil-plant system. A complete harvest at the end of the experiment enabled for the first time the assessment of fine and coarse root biomass of individual trees with a high vertical resolution down to two meter depth. Plant growth was significantly reduced by elevated ozone but not affected by P. citricola. Biomass partitioning between fine and coarse roots as well as vertical root distribution were significantly affected by both factors, whereas changes in root/shoot biomass ratio were not observed.


Free air ozone enrichment Beech Plant growth Root biomass 



This work was supported in parts by the German Research foundation (DFG) through the ‘Sonderforschungsbereich’ (SFB) 607. The authors would like to thank H.-D. Payer for his engagement to realise the experiment and the technical staff from the Department of Environmental Engineering for their valuable support during the experiment. We greatly acknowledge the help of I. Süß and J. Heckmair during final harvest and W. Aigner and M. Lehmann are thanked for sampling roots from approx. 30,000 kg soil.


  1. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228. doi: 10.1046/j.1469-8137.2003.00674.x CrossRefGoogle Scholar
  2. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964. doi: 10.1111/j.1365-3040.2005.01341.x CrossRefGoogle Scholar
  3. Chappelka AH, Samuelson LS (1998) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108. doi: 10.1046/j.1469-8137.1998.00166.x CrossRefGoogle Scholar
  4. Chen W, Zhang Q, Cihlar J, Bauhus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: A new approach. Plant Soil 265:31–46. doi: 10.1007/s11104-005-8503-3 CrossRefGoogle Scholar
  5. Curt T, Prévosto B (2003) Root biomass and rooting profile of naturally regenerated beech in mid-elevation Scots pine woodlands. Plant Ecol 167:269–282. doi: 10.1023/A:1023904912712 CrossRefGoogle Scholar
  6. Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: Implications for root longevity. New Phytol 147:33–42. doi: 10.1046/j.1469-8137.2000.00686.x CrossRefGoogle Scholar
  7. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. PaulGoogle Scholar
  8. Fleischmann F, Schneider D, Matyssek R, Oßwald W (2002) Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biol 4:144–152. doi: 10.1055/s-2002-25728 CrossRefGoogle Scholar
  9. Fleischmann F, Göttlein A, Rodenkirchen H, Lütz C, Oßwald W (2004) Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. undulata. For Pathol 34:79–92. doi: 10.1111/j.1439-0329.2004.00349.x Google Scholar
  10. Fleischmann F, Koehl J, Portz R, Beltrame AB, Oßwald W (2005) Physiological changes of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin “citricolin” to pathogenesis. Plant Biol 7:650–658. doi: 10.1055/s-2005-872891 CrossRefPubMedGoogle Scholar
  11. Fleischmann F, Winkler JB, Oßwald WF (2009) Effects of ozone and Phytophthora citricola on carbon storage of European beech (Fagus sylvatica). Plant Soil (this issue).Google Scholar
  12. Fowler D, Cape JN, Coyle M, Smith RI, Hjellbrekke AG, Simpson D, Derwent RG, Johnson CE (1999) Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environ Pollut 100:43–55. doi: 10.1016/S0269-7491(99)00087-1 CrossRefPubMedGoogle Scholar
  13. Gayler S, Klier C, Müller CW, Weiss W, Winkler JB, Priesack E (2009) Analysing the role of soil properties, initial biomasses and ozone on observed variability of plant growth in a lysimeter study. Plant Soil (this issue)Google Scholar
  14. Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analysis to unravel competition, CO2 and O3 effects on the phsiological performance of different-aged trees. Plant Cell Environ 30:1023–1034. doi: 10.1111/j.1365-3040.2007.01696.x CrossRefPubMedGoogle Scholar
  15. Grams TEE, Matyssek R (2009) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environ Pollut (submitted).Google Scholar
  16. Grantz DA, Gunn S, Vu HB (2006) O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant Cell Environ 29:1193–1209. doi: 10.1111/j.1365-3040.2006.01521.x CrossRefPubMedGoogle Scholar
  17. Grebenc T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech tress chronically fumigated with double ambient ozone concentration. Plant Biol ▪▪▪:9.Google Scholar
  18. Haberer K, Herbinger K, Alexou M, Tausz M, Rennenberg H (2007) Antioxidative defence of old growth beech (Fagus sylvatica) under double ambient O3 concentrations in a free-air exposure system. Plant Biol 9:215–226. doi: 10.1055/s-2007-964824 CrossRefPubMedGoogle Scholar
  19. Jung T, Blaschke H, Oßwald W (2000) Involvement of soilborne Phytophthora species in central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718. doi: 10.1046/j.1365-3059.2000.00521.x CrossRefGoogle Scholar
  20. Jung T, Hudler G, Jensen-Tracy S et al (2005) Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist 19:159–166. doi: 10.1017/S0269915X05004052 CrossRefGoogle Scholar
  21. Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Glob Change Biol 8:329–338. doi: 10.1046/j.1354-1013.2002.00479.x CrossRefGoogle Scholar
  22. Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ 28:965–981. doi: 10.1111/j.1365-3040.2005.01362.x CrossRefGoogle Scholar
  23. Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007a) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506. doi: 10.1016/j.envpol.2006.08.043 CrossRefPubMedGoogle Scholar
  24. Karnosky DF, Werner H, Holopainen T, Percy KE, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007b) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190. doi: 10.1055/s-2006-955915 CrossRefPubMedGoogle Scholar
  25. King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–636. doi: 10.1111/j.1469-8137.2005.01557.x CrossRefPubMedGoogle Scholar
  26. King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250. doi: 10.1007/s004420100656 CrossRefGoogle Scholar
  27. Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impacts in trees. Environ Pollut 115:373–393. doi: 10.1016/S0269-7491(01)00228-7 CrossRefGoogle Scholar
  28. Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing season. Glob Change Biol 11:1387–1401. doi: 10.1111/j.1365-2486.2005.00993.x CrossRefGoogle Scholar
  29. Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196. doi: 10.1111/j.1469-8137.2005.01391.x CrossRefPubMedGoogle Scholar
  30. Löw M, Herbinger K, Nunn AJ, Häberle K-H, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006) Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica). Trees (Berl) 20:539–548. doi: 10.1007/s00468-006-0069-z CrossRefGoogle Scholar
  31. Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649. doi: 10.1055/s-2005-872902 CrossRefPubMedGoogle Scholar
  32. Luedemann G, Matyssek R, Winkler JB, Grams TEE (2009) Contrasting ozone x pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil (submitted).Google Scholar
  33. Manning WJ (2005) Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest progress and an experimental approach. Environ Pollut 137:443–454. doi: 10.1016/j.envpol.2005.01.031 CrossRefPubMedGoogle Scholar
  34. Matyssek R, Sandermann H (2003) Impact of ozone on trees: An ecophysiological perspective. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in Botany, vol 64. Springer, Berlin, pp 349–404Google Scholar
  35. Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment-experimental risk assesssment of mitigation by chronic ozone impact. Plant Biol 9:163–180. doi: 10.1055/s-2007-964883 CrossRefPubMedGoogle Scholar
  36. Meier I, Leuschner C (2008) Belowground drought response of European beech: fine root boimass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–2095. doi: 10.1111/j.1365-2486.2008.01634.x CrossRefGoogle Scholar
  37. Nechwatal J, Oßwald W (2001) Comparative studies on the fine root status of healthy and declining spruce and beech trees in the Bavarian Alps and occurrence of Phytophthora and Pythium species. For Pathol 31:257–273Google Scholar
  38. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lutz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506. doi: 10.1016/j.envpol.2005.01.036 CrossRefPubMedGoogle Scholar
  39. Nunn AJ, Reiter IM, Häberle K-H, Werner H, Langebartels C, Sandermann H, Heerdt C, Fabian P, Matyssek R (2002) “Free-Air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech. Phyton 42:105–119Google Scholar
  40. Nunn AJ, Wieser G, Reiter IM, Häberle K-H, Grote R, Havranek WM, Matyssek R (2006) Testing the unifying theory of ozone sensitivity with mature trees of Fagus sylvatica and Picea abies. Tree Physiol 26:1391–1403PubMedGoogle Scholar
  41. Olszyk D, Johnson MG, Phillips DL, Seidler RJ, Tingey D, Watrud LS (2001) Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Environ Pollut 115:447462. doi: 10.1016/S0269-7491(01)00234-2 CrossRefGoogle Scholar
  42. Oßwald W, Koehl J, Heiser I, Nechtwatal J, Fleischmann F (2004) New insights in the genus Phytophthora and current diseases these pathogens cause in their ecosystem. In: Esser K, Lüttger U, Beyschlag W, Murata J (eds) Progress in Botany, vol. 65. Springer-Verlag, Berlin, pp 436–466Google Scholar
  43. Ostonen I, Puttsepp U, Biel C, Alberton O, Bakker MR, Lohmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. doi: 10.1080/11263500701626069 Google Scholar
  44. Paludan-Müller G, Saxe H, Leverenz JW (1999) Responses to Ozone in 12 provenances of european beech (Fagus sylvatica): genotypic variation and chamber effects on photosynthesis and dry-matter partitioning. New Phytol 144:261–273. doi: 10.1046/j.1469-8137.1999.00518.x CrossRefGoogle Scholar
  45. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey G, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407. doi: 10.1038/nature01028 CrossRefPubMedGoogle Scholar
  46. Pregitzer KS, Burton AJ, King IS, Zak DR (2008) Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytol 180:153–161. doi: 10.1111/j.1469-8137.2008.02564.x CrossRefPubMedGoogle Scholar
  47. Pritsch K, Ernst D, Fleischmann F, Gayler S, Grams TEE, Göttlein A, Heller W, Koch N, Lang H, Matyssek R, Munch JC, Olbrich M, Scherb H, Stich S, Winkler JB, Schloter M (2008) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut Focus 8:139–154. doi: 10.1007/s11267-007-9164-4 CrossRefGoogle Scholar
  48. Pritsch K, Esperschuetz J, Haesler F, Raidl S, Winkler JB, Schloter M (2009) Structure and activities of ectomycorrhizal and microbial communities in the rhizosphere of Fagus sylvatica under ozone and pathogen stress in a lysimeter study. Plant Soil (this issue).Google Scholar
  49. Pritsch K, Luedemann G, Matyssek R, Hartmann R, Schloter M, Scherb H, Grams TEE (2005) Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures. Plant Biol 7:718–727. doi: 10.1055/s-2005-872972 CrossRefPubMedGoogle Scholar
  50. Ryser P (2006) The mysterious root length. Plant Soil 286:1–6. doi: 10.1007/s11104-006-9096-1 CrossRefGoogle Scholar
  51. Schloter M, Winkler JB, Aneja M, Fleischmann F, Pritsch K, Heller W, Stich S, Grams TEE, Göttlein A, Matyssek R, Munch J-C (2005) Short-term effects of ozone on the plant-rhizosphere-bulk soil system of young beech trees. Plant Biol 7:728–736. doi: 10.1055/s-2005-872987 CrossRefPubMedGoogle Scholar
  52. Seyfahrt M, Reth S (2008) Lysimeter Soil Retriever (LSR)-an application of a new technique for retrieving soils from lysimeters. Water Air Soil Pollut Focus 8:227–231. doi: 10.1007/s11267-007-9161-7 CrossRefGoogle Scholar
  53. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794. doi: 10.1038/nature06059 CrossRefPubMedGoogle Scholar
  54. Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122. doi: 10.1046/j.1469-8137.1998.00184.x CrossRefGoogle Scholar
  55. The Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. The Royal Society, London, p 132Google Scholar
  56. Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89. doi: 10.1023/A:1004313515294 CrossRefGoogle Scholar
  57. Wang Z, Göttlein A, Rodenkirchen H, Fleischmann F, Oßwald W (2003) The influence of Phytophthora citricola on rhizosphere soil solution chemistry and the nutritional status of European beech seedlings. J Phytopathol 151:365–368. doi: 10.1046/j.1439-0434.2003.00729.x CrossRefGoogle Scholar
  58. Winkler JB, Lang H, Graf W, Reth S, Munch JC (2009) Experimental setup of field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil (this issue).Google Scholar
  59. Yamaji K, Julkunen-Tiitto R, Rousi M, Freiwald V, Oksanen E (2003) Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth). Glob Change Biol 9:1363–1377. doi: 10.1046/j.1365-2486.2003.00669.x CrossRefGoogle Scholar
  60. Zak DR, Holmes WE, Pregitzer KS (2007) Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Ecology 88:2630–2639. doi: 10.1890/06-1819.1 CrossRefPubMedGoogle Scholar
  61. Zeleznik P, Hrenko M, Then C, Koch N, Grebenc T, Levanic T, Kraigher H (2007) CASIROZ: root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol 9:298–308. doi: 10.1055/s-2006-955916 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Barbro Winkler
    • 1
  • Frank Fleischmann
    • 2
  • Sebastian Gayler
    • 3
  • Hagen Scherb
    • 4
  • Rainer Matyssek
    • 5
  • Thorsten E. E. Grams
    • 5
  1. 1.Institute of Soil Ecology, Department of Environmental EngineeringHelmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Pathology of Woody Plants, Department of Ecology & Ecosystem Sciences, Center of Life and Food Science WeihenstephanTechnische Universität MünchenFreisingGermany
  3. 3.Institute of Soil Ecology, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
  4. 4.Institute of Biomathematics and Biometry, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
  5. 5.Ecophysiology of Plants, Department of Ecology & Ecosystem Sciences, Center of Life and Food Science WeihenstephanTechnische Universität MünchenFreisingGermany

Personalised recommendations