Plant and Soil

, Volume 324, Issue 1–2, pp 291–305 | Cite as

Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China

  • Li Li Han
  • En Tao Wang
  • Tian Xu Han
  • Jie Liu
  • Xin Hua Sui
  • Wen Feng Chen
  • Wen Xin Chen
Regular Article


To investigate the community composition and biogeography of soybean rhizobia in Xinjiang, a total of 151 strains were investigated with RFLP and phylogenetic analyses of 16S rRNA gene, 16S–23S intergenic spacer, three housekeeping genes (atpD, glnII and recA), and two symbiotic genes (nifH and nodC), as well as cross-nodulation. Two rhizobial species, Bradyrhizobium liaoningense and Sinorhizobium fredii, were found as dominant groups in communities of soybean rhizobia in Xinjiang, whereas three Rhizobium genomic species, B. yuanmingense and B. japonicum, were minor groups. These genomic species showed clear correlations with eco-regions, and their symbiotic genes were identical or very similar to those of the reference strains for the corresponding species. Conclusively, the dominant soybean rhizobia S. fredii and B. liaoningense in Xinjiang might be introduced from other Chinese regions, but they have been selected as the rhizobia adapted to the saline-alkaline soils. The high pH, salinity, and phosphate concentration in soil might be the environmental factors determining the biogeography of these bacteria. It is worth mentioning that a novel Rhizobium species that may have acquired the symbiotic genes from a Bradyrhizobium lineage was identified.


Biogeography Phylogeny Symbiosis Soybean Rhizobia Xinjiang 



We thank Geng Tong Luo and Jian Jun Wei in Academy of Xinjiang Agricultural Settlement for providing seeds and helping to collect nodules. This work was supported by National Natural Science Foundation of China (project no. 30670001 and 30400001), National Basic Research Program of China (2006CB100206, 2006AA10A213) and National Program for Basic S & T Platform Construction (2005DKA21201-2). E.T.W. was supported by the grants of SIP 20070538 and SIP 20080322 authorized by IPN, Mexico.

Supplementary material

11104_2009_9956_MOESM1_ESM.ppt (237 kb)
Supplementary Figure A Dendrogram showing the genetic diversity of Xinjiang oybean rhizobia revealed by RFLP of amplified 16S rRNA gene. The Dice coefficient and UPGMA method were used for clustering analysis. (PPT 237 kb)
11104_2009_9956_MOESM2_ESM.ppt (106 kb)
Supplementary Figure B Simplified dendrogram showing the genetic diversity of Xinjiang soybean rhizobia revealed by ribosomal IGS RFLP. The Dice coefficient and UPGMA method were used for clustering analysis. (PPT 106 kb)
11104_2009_9956_MOESM3_ESM.ppt (200 kb)
Supplementary Figure C Dendrogram showing the genetic diversity of Xinjiang soybean rhizobia revealed by PCR-based nodC RFLP. The Dice coefficient and UPGMA method were used for clustering. (PPT 200 kb)
11104_2009_9956_MOESM4_ESM.ppt (110 kb)
Supplementary Figure D Neighbor-joining tree of nifH gene showing the phylogenetic relationships among the Xinjiang soybean rhizobia. The trees are bootstrapped with 1000 subreplicates and the confidence levels greater than 50% are indicated at the internodes. The scale bar represents 2% substitutions per site. (PPT 110 kb)
11104_2009_9956_MOESM5_ESM.doc (90 kb)
Supplementary Table A Bacterial strains used in this study, their relevant characters and sampling sites (DOC 90 kb)


  1. Abaidoo RC, Keyser HH, Singleton PW, Borthakur D (2002) Comparison of molecular and antibiotic resistance profile methods for the population analysis of Bradyrhizobium spp.(TGx) isolates that nodulate the new TGx soybean cultivars in Africa. J Appl Microbiol 92:109–117. doi: 10.1046/j.1365-2672.2002.01518.x CrossRefPubMedGoogle Scholar
  2. Ando S, Yokoyama T (1999) Phylogenetic analyses of Bradyrhizobium strains nodulating soybean (Glycine max) in Thailand with reference to the USDA strains of Bradyrhizobium. Can J Microbiol 45:639–645. doi: 10.1139/cjm-45-8-639 CrossRefPubMedGoogle Scholar
  3. Andronov EE, Terefework Z, Roumiantseva ML, Dzyubenko NI, Onichtchouk OP, Kurchak ON, Dresler-Nurmi A, Young JPW, Simarov BV, Lindström K (2003) Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus. Appl Environ Microbiol 69:1067–1074. doi: 10.1128/AEM.69.2.1067-1074.2003 CrossRefPubMedGoogle Scholar
  4. Appunu C, N’Zoue A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996. doi: 10.1128/AEM.01320-08 CrossRefPubMedGoogle Scholar
  5. Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643. doi: 10.1128/AEM.01823-06 CrossRefPubMedGoogle Scholar
  6. Botha WJ, Jaftha JB, Bloem JF, Habig JH, Law IJ (2004) Effect of soil bradyrhizobia on the success of soybean inoculant strain CB 1809. Microbiol Res 159:219–231. doi: 10.1016/j.micres.2004.04.004 CrossRefPubMedGoogle Scholar
  7. Camacho M, Santamaría C, Rodríguez-Navarro DN et al (2002) Soils of the Chinese Hubei Province show a very high diversity of Sinorhizobium fredii strains. Syst Appl Microbiol 25:592–602. doi: 10.1078/07232020260517733 CrossRefPubMedGoogle Scholar
  8. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397Google Scholar
  9. Chen W, Wang E, Wang S, Li Y, Chen X (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159PubMedGoogle Scholar
  10. Chen LS, Figueredo A, Pedrosa FO, Hungria M (2000) Genetic characterization of soybean rhizobia in Paraguay. Appl Environ Microbiol 66:5099–5103. doi: 10.1128/AEM.66.11.5099-5103.2000 CrossRefPubMedGoogle Scholar
  11. Gao JL, Huang SH, Bai JF, Yang C (2003) Discussion on the Xinjiang ecological function division. Arid Environ Monit 17:90–92Google Scholar
  12. Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301. doi: 10.1016/j.syapm.2008.04.004 CrossRefPubMedGoogle Scholar
  13. Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant-and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339PubMedGoogle Scholar
  14. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139Google Scholar
  15. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251. doi: 10.1111/j.1462-2920.2004.00658.x CrossRefPubMedGoogle Scholar
  16. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi: 10.1093/bib/5.2.150 CrossRefPubMedGoogle Scholar
  17. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505Google Scholar
  18. Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63PubMedGoogle Scholar
  19. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993PubMedGoogle Scholar
  20. Laguerre G, Louvrier P, Allard MR, Amarger N (2003) Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol 69:2276–2283. doi: 10.1128/AEM.69.4.2276-2283.2003 CrossRefPubMedGoogle Scholar
  21. Madrzak CJ, Golinska B, Kroliczak J, Pudelko K, Lazewska D, Lampka B, Sadowsky MJ (1995) Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61:1194–1200PubMedGoogle Scholar
  22. Man CX, Wang H, Chen WF, Sui XH, Wang ET, Chen WX (2008) Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 310:77–87. doi: 10.1007/s11104-008-9631-3 CrossRefGoogle Scholar
  23. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. doi: 10.1099/ijs.0.65392-0 CrossRefPubMedGoogle Scholar
  24. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi: 10.1038/nrmicro1341 CrossRefPubMedGoogle Scholar
  25. Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85. doi: 10.1007/s00203-006-0173-x CrossRefPubMedGoogle Scholar
  26. Navarro E, Simonet P, Normand P, Bardin R (1992) Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115PubMedGoogle Scholar
  27. Peng GX, Tan ZY, Wang ET, Reinhold-Hurek B, Chen WF, Chen WX (2002) Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii. Int J Syst Evol Microbiol 52:457–462PubMedGoogle Scholar
  28. Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161:300–309PubMedGoogle Scholar
  29. Rasolomampianina R, Bailly X, Fetiarison R, Rabevohitra R, Bena G, Ramaroson L, Raherimandimby M, Moulin L, De Lajudie P, Dreyfus B (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α-and β-Proteobacteria. Mol Ecol 14:4135–4146. doi: 10.1111/j.1365-294X.2005.02730.x CrossRefPubMedGoogle Scholar
  30. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11. doi: 10.1016/j.femsec.2005.02.015 CrossRefPubMedGoogle Scholar
  31. Tan ZY, Xu XD, Wang ET, Gao JL, Martinez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879PubMedGoogle Scholar
  32. Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180. doi: 10.1016/S0168-1656(01) 00338-8 CrossRefPubMedGoogle Scholar
  33. Tian CF, Wang ET, Han TX, Sui XH, Chen WX (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Arch Microbiol 188:273–282. doi: 10.1007/s00203-007-0245-6 CrossRefPubMedGoogle Scholar
  34. Turner SL, Young JPW (2000) The Glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319PubMedGoogle Scholar
  35. van Berkum P, Fuhrmann JJ (2000) Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 50:2165–2172PubMedGoogle Scholar
  36. van Berkum P, Fuhrmann JJ (2001) Characterization of soybean bradyrhizobia for which serogroup affinities have not been identified. Can J Microbiol 47:519–525. doi: 10.1139/cjm-47-6-519 CrossRefPubMedGoogle Scholar
  37. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41Google Scholar
  38. Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, OxfordGoogle Scholar
  39. Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54. doi: 10.1016/j.ympev.2004.08.020 CrossRefPubMedGoogle Scholar
  40. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, Mahna SK, Prasad BN, Moe H, Selvaraju SB, Thierfelder H, Werner D (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl Environ Microbiol 74:6987–6996. doi: 10.1128/AEM.00875-08 CrossRefPubMedGoogle Scholar
  41. Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52:436–443. doi: 10.1007/s00248-006-9116-y CrossRefPubMedGoogle Scholar
  42. Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711PubMedCrossRefGoogle Scholar
  43. Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett 271:265–273. doi: 10.1111/j.1574-6968.2007.00727.x CrossRefPubMedGoogle Scholar
  44. Yang SS, Bellogin RA, Buendia A, Camacho M, Chen M, Cubo T, Daza A, Diaz CL, Espuny MR, Gutiérrez R (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J Biotechnol 9:243–255. doi: 10.1016/S0168-1656(01) 00340-6 CrossRefGoogle Scholar
  45. Yang JK, Zhang WT, Yuan TY, Zhou JC (2006) Genotypic characteristics of the rrn operon and genome of indigenous soybean Bradyrhizobia in cropping zones of China. Can J Microbiol 52:968–976. doi: 10.1139/W06-052 CrossRefPubMedGoogle Scholar
  46. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230. doi: 10.1099/ijs.0.01408-0 CrossRefPubMedGoogle Scholar
  47. Zhao TJ, Gai JY (2004) The origin and evolution of cultivated soybean Glycine max (L.) Merr. Scientia Agric Sin 37:954–962. (In Chinese)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Li Li Han
    • 1
  • En Tao Wang
    • 1
    • 2
  • Tian Xu Han
    • 1
    • 4
  • Jie Liu
    • 3
  • Xin Hua Sui
    • 1
  • Wen Feng Chen
    • 1
  • Wen Xin Chen
    • 1
  1. 1.State Key Laboratories for Agro-biotechnology/College of Biological SciencesChina Agricultural UniversityBeijingChina
  2. 2.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxico D. F.México
  3. 3.Department of Biological and Pharmaceutical Engineering, College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  4. 4.National Institute of Biological SciencesZhongguancun Life Science ParkBeijingChina

Personalised recommendations