Plant and Soil

, Volume 323, Issue 1–2, pp 249–265 | Cite as

Ability of Cistus L. shrubs to promote soil rehabilitation in extensive oak woodlands of Mediterranean areas

  • Maria Paula Simões
  • Manuel Madeira
  • Luiz Gazarini
Regular Article


To assess the ecological function of Cistus salviifolius (CS) and C. ladanifer (CL) shrubs in evergreen oak woodlands, a study was conducted over a 4-year period in southern Portugal. Annual potential return of bio-elements to the soil through litterfall and throughfall, and necromass on soil surface under shrub canopies were assessed along with the dynamics of leaf litter decomposition. Soil bulk density and soil-water retention at different soil matric potential were measured at 0–5 and 5–10 cm depth, and soil chemical properties were determined at 0–5, 5–10, 10–20 and 20–30 cm depth beneath canopies and at barren spaces. Litterfall was higher for CL (4.4–4.6 Mg DM ha−1 year−1) than for CS (3.3–3.8 Mg DM ha−1 year−1). Annual amount of N returned to the soil through litterfall of CS (22.9 kg N ha−1 year−1) was higher than by that of CL (17.2 kg N ha−1 year−1), whereas the return of P in CL (4.1 kg P ha−1 year−1) was higher than in CS (2.1 kg P ha−1 year−1). Leaf decomposition was faster for CS (k = −0.87) than for CL (k = −0.44). N release was also faster for CS than for CL, while that of P was much faster for CL than for CS. Throughfall proportions were 61% of bulk rainfall for CS and 79% for CL. Annual return of Cl, K+, Ca2+ and Mg2+ by throughfall was more pronounced for CL than for CS. Shrubs improved soil quality, especially in the 0–5 cm top soil layer, by enhancement of organic matter and nutrient content beneath shrub canopies. Therefore, shrubs may promote the invasion of more demanding species, since local areas of high fertility are likely to be favoured sites for vegetation regeneration.


Oak woodlands Mediterranean shrubs Litterfall Decomposition Throughfall Potential return of bio-elements Soil rehabilitation 



This study was developed within the activities of the Instituto de Ciências Agrárias Mediterrânicas and the Centro de Pedologia of the Portuguese Fundação para a Ciência e Tecnologia. Authors thank Prof. Manuela Morais of the Centro de Ecologia Aplicada and the staff of the Soil Laboratory of the Instituto Superior de Agronomia for chemical analyses. Dr. Jorge Nunes and the technicians of the Botany Laboratory of Universidade de Évora are also acknowledged for field and laboratory assistance.


  1. Andreu V, Rubio JL, Cerni R (1998) Effects of Mediterranean shrub cover on water erosion (Valencia, Spain). J Soil Water Conserv 53:112–120Google Scholar
  2. Archer N, Hess T, Quinton J (2002) The water balance of two semi-arid shrubs on abandoned land in South-Eastern Spain after cold season rainfall. Hydrol Earth Syst Sci 6:913–926Google Scholar
  3. Avila A, Rodrigo A, Rodà F (2002) Nitrogen circulation in a Mediterranean holm oak forest, La Castanya, Montseny, Northeastern Spain. Hydrol Earth Syst Sci 6:551–557Google Scholar
  4. Bastida F, Talavera S (2002) Temporal and spatial patterns of seed dispersal in two Cistus species (Cistaceae). Ann Bot (Lond) 89:427–434 doi: 10.1093/aob/mcf065 CrossRefGoogle Scholar
  5. Bellot J, Escarré A (1991) Chemical characteristics and temporal variations of nutrients in throughfall and stemflow of three species in Mediterranean holm oak forest. For Ecol Manag 41:125–135CrossRefGoogle Scholar
  6. Blondel J, Aronson J (1999) Biology and Wildlife of the Mediterranean Region. Oxford Univ Press, New YorkGoogle Scholar
  7. Brady NC, Weil RR (1999) The Nature and Properties of Soils, 12th edn. Prentice Hall, Upper saddle River, New JerseyGoogle Scholar
  8. Bruckert S (1979) Analyse des complexes organominéreaux des sols. In: Duchaufour P, Souchier B (eds) Pédologie 2. Constituants et Propriétées du Sol. Masson & Cie, Paris, pp 185–209Google Scholar
  9. Carvalhosa AB, Carvalho AMG, Alves CAM (1969) Notícia explicativa da folha 40-A—Évora da Carta Geológica de Portugal na escala de 1/50 000. Serviços Geológicos de Portugal, LisboaGoogle Scholar
  10. Castells E, Peñuelas J (2003) Is there a feedback between N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition? Oecologia 136:183–192 doi: 10.1007/s00442-003-1258-8 CrossRefPubMedGoogle Scholar
  11. Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Garmendia FM, Navarro C, Paiva J, Soriano C (1993) Flora Iberica. Plantas vasculares de la Península Ibérica e Islas Baleares, vol. vol 3. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  12. Cole DW, Rapp M (1980) Elemental cycling in forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. IBP 23, Cambridge Univ Press, Cambridge, pp 341–409Google Scholar
  13. Correia OA, Martins AC, Catarino FM (1992) Comparative phenology and seasonal foliar nitrogen variation in mediterranean species of Portugal. Ecol Medit 18:7–18Google Scholar
  14. Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34 doi: 10.1007/s11104-007-9285-6 CrossRefGoogle Scholar
  15. Cubera E, Moreno G (2007) Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Ann Sci 64:355–364 doi: 10.1051/forest:2007012 CrossRefGoogle Scholar
  16. Dahlgren RA, Singer MJ, Huang X (1997) Oak trees and grazing impacts on soil properties and nutrients in a California oak woodland. Biogeochemistry 39:45–64 doi: 10.1023/A:1005812621312 CrossRefGoogle Scholar
  17. David TS, Gash JHC, Valente F, Pereira JS, Ferreira MI, David JS (2006) Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah. Hydrol Process 20:2713–2726 doi: 10.1002/hyp.6062 CrossRefGoogle Scholar
  18. DGF (2007) Inventário Florestal Nacional (2005-2006). Direcção-Geral das Florestas, LisboaGoogle Scholar
  19. Dorich RA, Nelson DW (1983) Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Sci Soc Am J 47:833–836CrossRefGoogle Scholar
  20. Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe–past, present and future prospects. Agrofor Syst 67:29–50 doi: 10.1007/s10457-005-1111-7 CrossRefGoogle Scholar
  21. Escudero A, García B, Gómez JM, Luís E (1985) The nutrient cycling in Quercus rotundifolia and Quercus pyrenaica ecosystems (dehesas) of Spain. Acta Oecol 6:73–86Google Scholar
  22. Fioretto A, Papa S, Fuggi A (2003) Litter-fall and litter decomposition in a low Mediterranean shrubland. Biol Fertil Soils 39:37–44 doi: 10.1007/s00374-003-0675-5 CrossRefGoogle Scholar
  23. Fulbright TE (1996) Viewpoint: a theoretical basis for planning woody plant control to maintain species diversity. J Range Manage 49:554–559 doi: 10.2307/4002299 CrossRefGoogle Scholar
  24. Gallardo A, Merino J (1998) Soil nitrogen dynamics in response to carbon increase in a Mediterranean shrubland of SW Spain. Soil Biol Biochem 30:1349–1358 doi: 10.1016/S0038-0717(97)00265-4 CrossRefGoogle Scholar
  25. Gallardo JF, Martín A, Moreno G (1999) Nutrient efficiency and resorption in Quercus pyrenaica oak coppices under different rainfall regimes of the Sierra de Gata mountains (central western Spain). Ann Sci 56:321–331 doi: 10.1051/forest:19990406 CrossRefGoogle Scholar
  26. Gimeno-García E, Andreu V, Rubio JL (2001) Influence of Mediterranean shrub species on soil chemical properties in typical Mediterranean environment. Commun Soil Sci Plant Anal 32:1885–1898 doi: 10.1081/CSS-120000256 CrossRefGoogle Scholar
  27. Gómez-Rey MX, Vasconcelos E, Madeira M (2008) Effects of eucalypt residue management on nutrient leaching and soil properties. Eur J For Res. doi: 10.1007/s10342-008-0217-7
  28. Gordon AM, Chourmouzis C, Gordon AG (2000) Nutrient inputs in litterfall and rainwater fluxes in 27-year old red, black and white spruce plantations in Central Ontario, Canada. For Ecol Manag 138:65–78CrossRefGoogle Scholar
  29. Hibbard KA, Archer S, Schimel DS, Valentine DW (2001) Biogeochemical changes accompanying woody plant encroachment in a subtropical Savanna. Ecology 82:1999–2011CrossRefGoogle Scholar
  30. Houba VJG, Novozamsky I, Tenminghoff E (1994) Soil Analysis Procedures. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The NetherlandsGoogle Scholar
  31. Joffre R, Rambal S, Ratte PJ (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79 doi: 10.1023/A:1006259402496 CrossRefGoogle Scholar
  32. Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol (Amst) 335:37–54 doi: 10.1016/j.jhydrol.2006.10.032 CrossRefGoogle Scholar
  33. Madeira M, Ribeiro C (1995) Influence of leaf litter type on the chemical evolution of a soil parent material (sandstone). Biogeochemistry 29:43–58 doi: 10.1007/BF00002593 CrossRefGoogle Scholar
  34. Madeira M, Araújo MC, Pereira JS (1995) Effects of water and nutrient supply on amount and on nutrient concentration of litterfall and forest floor litter in Eucalyptus globulus plantations. Plant Soil 168–169:287–295 doi: 10.1007/BF00029340 CrossRefGoogle Scholar
  35. Martín Bolaños M, Guinea López E (1949) Jarales y Jaras (Cistografia Hispanica). Ministerio de Agricultura, MadridGoogle Scholar
  36. Martínez F, Merino O, Martín A, García Martín D, Merino J (1998) Belowground structure and production in a Mediterranean sand dune shrub community. Plant Soil 201:209–216 doi: 10.1023/A:1004389329411 CrossRefGoogle Scholar
  37. Miles J (1985) The pedogenic effects of different species and vegetation types and the implications of succession. J Soil Sci 36:571–584 doi: 10.1111/j.1365-2389.1985.tb00359.x CrossRefGoogle Scholar
  38. Miranda P, Coelho FES, Tomé AR, Valente MA (2002) 20th century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate Change in Portugal: Scenarios, Impacts and Adaptation Measures, SIAM project. Gradiva, Lisboa, pp 25–83Google Scholar
  39. Monokrousos N, Papatheodorus EM, Diamantopoulos JD, Stamou GP (2004) Temporal and spatial variability of soil chemical and biological variables in a Mediterranean shrubland. For Ecol Manage 202:83–91CrossRefGoogle Scholar
  40. Moreno G, Obrador JJ (2007) Effects of trees and understory management on soil fertility and nutrient status of holm oaks in Spanish dehesas. Nutr Cycl Agroecosyst 78:253–264 doi: 10.1007/s10705-007-9089-3 CrossRefGoogle Scholar
  41. Moreno G, Gallardo JF, Bussotti F (2001) Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain). For Ecol Manag 149:47–60CrossRefGoogle Scholar
  42. Moro MJ, Domingo F, Escarré A (1996) Organic matter and nitrogen cycles in a pine afforested catchment with a shrub layer of Adenocarpus decorticans and Cistus laurifolius in south-eastern Spain. Ann Bot (Lond) 78:675–685 doi: 10.1006/anbo.1996.0177 CrossRefGoogle Scholar
  43. Nunes J (2004) Interacção solo-árvore isolada em montados de azinho (Quercus rotundifolia Lam.): processos fundamentais. Ph. D. Thesis. Universidade de Évora, Évora, PortugalGoogle Scholar
  44. Nunes J, Madeira M, Gazarini L (2005) Some ecological impacts of Quercus rotundifolia trees on the understory environment in the “montado” agrosilvopastoral system, Southern Portugal. In: Mosquera-Losada MR, Riguero Rodriguez A, McAdam J (eds) Silvopastoralism and Sustainable Land Management. CAB International, Oxfordshire, pp 275–277CrossRefGoogle Scholar
  45. Núñez-Olivera E, Martínez-Abaigar J, Escudero-García JC (1993) Litterfall and nutrient flux in Cistus ladanifer L. shrubland in S.W. Spain. Acta Oecol 14:361–369Google Scholar
  46. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331 doi: 10.2307/1932179 CrossRefGoogle Scholar
  47. Pérez-García F (1997) Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecol 133:57–62 doi: 10.1023/A:1009776910683 CrossRefGoogle Scholar
  48. Plieninger T, Pulido FJ, Konold W (2003) Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environ Conserv 30:61–70 doi: 10.1017/S0376892903000055 Google Scholar
  49. Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. J Arid Environ 57:345–364 doi: 10.1016/S0140-1963(03)00103-4 CrossRefGoogle Scholar
  50. Pulido F, Díaz M (2005) Regeneration of a Mediterranean oak: a whole cycle approach. Ecoscience 12:92–102 doi: 10.2980/i1195-6860-12-1-92.1 CrossRefGoogle Scholar
  51. Pulido FJ, Díaz M, de Trucios SJH (2001) Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. For Ecol Manag 146:1–13CrossRefGoogle Scholar
  52. Quilchano C, Haneklaus S, Gallardo JF, Schnug E, Moreno G (2002) Sulphur balance in a broadleaf, non-polluted, forest ecosystem (central-western Spain). For Ecol Manag 161:205–214CrossRefGoogle Scholar
  53. Ramos Solano B, Pereyra de la Iglesia MT, Probanza A, Lucas García JA, Megías M, Gutierrez Mañero FJ (2006) Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant Soil 287:59–68 doi: 10.1007/s11104-006-9055-x CrossRefGoogle Scholar
  54. Rapp M, Santa Regina I, Rico M, Gallego HA (1999) Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. For Ecol Manag 119:39–49CrossRefGoogle Scholar
  55. Reis RMM, Gonçalves MZ (1987) Clima de Portugal, Fascículo XXXIV. Caracterização climática da região agrícola do Alentejo. Instituto Nacional de Meteorologia e Geofísica, LisboaGoogle Scholar
  56. Riehm H (1958) Die ammoniumlaktatessignäure. Methode zur bestimmung der leichtloslichen phosphorsäure in karbonataligen böden. Agrochimica 3:49–65Google Scholar
  57. Rivas-Martínez S, Penas A, Díaz TE (2004) Biogeographic and bioclimatic maps of Europe. Serviços Cartográficos da Universidad de Léon, LéonGoogle Scholar
  58. Rodà F, Mayor X, Sabaté S, Diego V (1999) Water and nutrient limitations to primary production. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean Evergreen Oak Forests. Ecological Studies 137. Springer-Verlag, Berlin, pp 183–194Google Scholar
  59. Rodà F, Avila A, Rodrigo A (2002) Nitrogen deposition in Mediterranean forests. Environ Pollut 118:205–213 doi: 10.1016/S0269-7491(01)00313-X CrossRefPubMedGoogle Scholar
  60. Sá C, Madeira M, Gazarini L (2005) Produção e decomposição de folhas da folhada de Quercus suber L. e Q. rotundifolia Lam. Rev Cienc Agrarias 28:257–272Google Scholar
  61. Santa Regina I (2000) Organic matter distribution and nutrient fluxes within a sweet chestnut (Castanea sativa Mill.) stand of the Sierra de Gata, Spain. Ann Sci 57:691–700 doi: 10.1051/forest:2000150 CrossRefGoogle Scholar
  62. Schlesinger WH, Pilmanis AM (1998) Plant-soil interactions in deserts. Biogeochemistry 42:169–187 doi: 10.1023/A:1005939924434 CrossRefGoogle Scholar
  63. Schlesinger WH, Raikes JA, Hartley AE, Cross AE (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 72:364–374 doi: 10.2307/2265615 CrossRefGoogle Scholar
  64. Simões MP, Madeira M, Gazarini L (2008) The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of Mediterranean shrubs in the context of global climate changes. Flora 203:578–589Google Scholar
  65. Spears JDH, Lajtha K, Caldwell BA, Pennington SB, Vanderbilt K (2001) Species effects of Ceanothus velutinus versus Pseudotsuga menziesii, Douglas-fir, on soil phosphorus and nitrogen properties in the Oregon cascades. For Ecol Manag 149:205–216CrossRefGoogle Scholar
  66. Vallejo R, Aronson J, Pausas J, Cortina J (2006) Restoration of Mediterranean Woodlands. In: Andel JV, Aronson J (eds) Restoration Ecology. The New Frontier. Blackwell Pub, Oxford, pp 193–207Google Scholar
  67. Van Breemen N, Finzi AC (1998) Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42:1–19 doi: 10.1023/A:1005962124317 CrossRefGoogle Scholar
  68. Whitford WG, Anderson J, Rice PM (1997) Stemflow contribution to the ‘fertile island’ effect in creosotebush, Larrea tridentata. J Arid Environ 35:451–457 doi: 10.1006/jare.1996.0164 CrossRefGoogle Scholar
  69. WRB (2006) World Reference Base for Soil Resources, 2nd edn. World Soil Resources Reports N°. 103. FAO, RomeGoogle Scholar
  70. Zunzunegui M, Díaz Barradas MC, Ain-Lhout F, Clavijo A, García Novo F (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89 doi: 10.1007/s11104-004-6806-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maria Paula Simões
    • 1
  • Manuel Madeira
    • 2
  • Luiz Gazarini
    • 1
  1. 1.Instituto de Ciências Agrárias Mediterrânicas/Departamento de BiologiaUniversidade de ÉvoraÉvoraPortugal
  2. 2.Instituto Superior de AgronomiaUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations