Skip to main content

Advertisement

Log in

Plant root growth, architecture and function

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Without roots there would be no rhizosphere and no rhizodeposition to fuel microbial activity. Although micro-organisms may view roots merely as a source of carbon supply this belies the fascinating complexity and diversity of root systems that occurs despite their common function. Here, we examine the physiological and genetic determinants of root growth and the complex, yet varied and flexible, root architecture that results. The main functions of root systems are also explored including how roots cope with nutrient acquisition from the heterogeneous soil environment and their ability to form mutualistic associations with key soil micro-organisms (such as nitrogen fixing bacteria and mycorrhizal fungi) to aid them in their quest for nutrients. Finally, some key biotic and abiotic constraints on root development and function in the soil environment are examined and some of the adaptations roots have evolved to counter such stresses discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113 doi:10.1007/BF00009546

    Article  Google Scholar 

  • Ahern CP, Staff IA (1994) Symbiosis in cycads: the origin and development of coralloid roots in Macrozamia communis (Cycadaceae). Am J Bot 81:1559–1570 doi:10.2307/2445333

    Article  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120 doi:10.1016/j.cell.2004.09.018

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot (Lond) 97:883–893 doi:10.1093/aob/mcl027

    Article  CAS  Google Scholar 

  • Amor BB, Sidney L, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506 doi:10.1046/j.1365-313X.2003.01743.x

    Article  PubMed  Google Scholar 

  • Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ (1996) A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc Natl Acad Sci USA 93:5682–5687 doi:10.1073/pnas.93.12.5682

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis–a preliminary study of soil-oxidizing sites and internal gas transport pathways. New Phytol 108:373–382 doi:10.1111/j.1469-8137.1988.tb04177.x

    Article  Google Scholar 

  • Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73 doi:10.1016/0304-3770(91)90022-W

    Article  Google Scholar 

  • Atkinson D, Berta G, Hooker JE (1994) Impact of root colonization in root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhäuser Verlag, Basel, pp 89–99

    Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivar. New Phytol 87:677–685 doi:10.1111/j.1469-8137.1981.tb01702.x

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266 doi:10.1146/annurev.arplant.57.032905.105159

    Article  PubMed  CAS  Google Scholar 

  • Barker S, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    PubMed  CAS  Google Scholar 

  • Bauer CR, Kellogg CH, Bridgham SD, Lamberti GA (2003) Mycorrhizal colonisation across hydrologic gradients in restored and reference fresh-water wetlands. Wetlands 23:961–968 doi:10.1672/0277-5212(2003)023[0961:MCAHGI]2.0.CO;2

    Article  Google Scholar 

  • Benfey PN, Scheres B (2000) Root development. Curr Biol 10:R813–R815 doi:10.1016/S0960-9822(00)00814-9

    Article  PubMed  CAS  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465 doi:10.1146/annurev.arplant.58.032806.103805

    Article  PubMed  CAS  Google Scholar 

  • Bengough AG (2003) Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser EJW (eds) Ecological studies, vol. 168: root ecology. Springer-Verlag, Berlin-Heidelberg, pp 151–171

    Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602 doi:10.1016/S0092-8674(03)00924-3

    Article  PubMed  CAS  Google Scholar 

  • Bernston GM (1994) Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493 doi:10.1111/j.1469-8137.1994.tb03966.x

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215 doi:10.1111/j.1469-8137.1990.tb00392.x

    Article  Google Scholar 

  • Berta G, Tagliasacchi AM, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristems of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12–16 doi:10.1007/BF01328892

    Article  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Marini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera L. Tree Physiol 15:281–293

    PubMed  Google Scholar 

  • Berta G, Fusconi A, Hooker J (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag, Basel, pp 71–86

    Google Scholar 

  • Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on root morphogenesis. Eur J Plant Pathol 111:279–288 doi:10.1007/s10658-004-4585-7

    Article  Google Scholar 

  • Bidel L, Renault P, Pagès L, Rivière LM (2000) An improved method to measure spatial variation in root respiration: application to the taproot of a young peach tree Prunus persica. Agronomie 21:179–192 doi:10.1051/agro:2001116

    Article  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44 doi:10.1038/nature03184

    Article  PubMed  CAS  Google Scholar 

  • Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833

    PubMed  CAS  Google Scholar 

  • Borisov AY, Danilova TN, Koroleva TA, Kuznetsova EV, Madsen L, Mofett M, Naumkina TS, Nemanki TA, Ovchinnikov ES, Pavlova ZB, Petrova NE, Pinaev AG, Radutoiu S, Rozov SM, Rychagova ST, Shtark OY, Solovov II, Stougaard JS, Tikhonovich IA, Topunov AF, Tsyganov VE, Vasil’chikov AG, Voroshilova VA, Weeden NF, Zhernakov AI, Zhukov VA (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol 43:237–243 doi:10.1134/S0003683807030027

    Article  CAS  Google Scholar 

  • Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal fungi colonisation in cluster roots of Hakea verrucosa F. Muell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367 doi:10.1007/s11104-004-0908-x

    Article  CAS  Google Scholar 

  • Braum SM, Helmke PA (1995) White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 176:95–100 doi:10.1007/BF00017679

    Article  CAS  Google Scholar 

  • Bradford MA, Eggers T, Newington JE, Tordoff GM (2007) Soil faunal assemblage composition modifies root in-growth to plant litter patches. Pedobiologia (Jena) 50:505–513 doi:10.1016/j.pedobi.2006.07.001

    Article  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfy PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  PubMed  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant Cell Environ 20:1175–1183 doi:10.1046/j.1365-3040.1997.d01-142.x

    Article  CAS  Google Scholar 

  • Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538 doi:10.1007/BF00320417

    Article  Google Scholar 

  • Cannon WA (1949) A tentative classification of root sytems. Ecology 30:452–458 doi:10.2307/1932458

    Article  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett P (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650 doi:10.1111/j.1365-3040.2005.01310.x

    Article  CAS  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142 doi:10.1101/gad.9.17.2131

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896 doi:10.1038/nrg2179

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260 doi:10.1146/annurev.es.11.110180.001313

    Article  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439 doi:10.1105/tpc.107.053009

    Article  PubMed  CAS  Google Scholar 

  • Citernesi AS, Vitagliano C, Giovannetti M (1998) Plant growth and root system morphology of Olea europea L. rooted cuttings as influenced by arbuscular mycorrhizas. J Hortic Sci Biotechnol 73:647–654

    Google Scholar 

  • Clark LH, Harris WH (1981) Observations on the root anatomy of rice (Oryza sativa L.). Am J Bot 68:154–161 doi:10.2307/2442846

    Article  Google Scholar 

  • Clark LJ, Barraclough PB (1999) Do dicotyledons generate greater maximum axial root growth pressures than monocotyledons? J Exp Bot 50:1263–1266 doi:10.1093/jexbot/50.336.1263

    Article  CAS  Google Scholar 

  • Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104 doi:10.1023/A:1026140122848

    Article  CAS  Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 483–510

    Google Scholar 

  • Clowes FAL (1981) Cell proliferation in ectotrophic mycorrhizas of Fagus sylvatica. New Phytol 87:547–555 doi:10.1111/j.1469-8137.1981.tb03225.x

    Article  Google Scholar 

  • Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot (Lond) 91:301–309 doi:10.1093/aob/mcf114

    Article  CAS  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778 doi:10.1111/j.1469-8137.2006.01725.x

    Article  PubMed  CAS  Google Scholar 

  • Cooke JC, Lefor MW (1998) The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restor Ecol 6:214–222 doi:10.1111/j.1526-100X.1998.00628.x

    Article  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–1829 doi:10.2307/3558359

    Article  Google Scholar 

  • Cruz C, Lips SH, Martins-Loucao MA (1995) Uptake of inorganic nitrogen in roots of carob seedlings. Physiol Plant 95:167–175 doi:10.1111/j.1399-3054.1995.tb00824.x

    Article  CAS  Google Scholar 

  • Cui M, Caldwell MM (1996a) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453–460 doi:10.1111/j.1469-8137.1996.tb01912.x

    Article  CAS  Google Scholar 

  • Cui M, Caldwell MM (1996b) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytol 133:461–467 doi:10.1111/j.1469-8137.1996.tb01913.x

    Article  CAS  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsc HJ, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balance in maize (Zea mays L.). J Plant Physiol 141:33–39

    Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481 doi:10.1016/j.tplants.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682 doi:10.1016/j.cub.2007.02.047

    Article  PubMed  CAS  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384 doi:10.1126/science.1164147

    Article  PubMed  CAS  Google Scholar 

  • Demchenko NP, Demchenko KN (2001) Resumption of DNA synthesis and cell division in wheat roots as related to lateral root initiation. Russ J Plant Physiol 48:755–763 doi:10.1023/A:1012552307270

    Article  CAS  Google Scholar 

  • Denton MD, Veneklaas EJ, Lambers H (2007) Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)? New Phytol 173:592–599 doi:10.1111/j.1469-8137.2006.01956.x

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006a) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887 doi:10.1007/s11103-005-4547-2

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006b) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439 doi:10.1016/j.tplants.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  • Dexter AR (1987) Mechanics of root growth. Plant Soil 97:401–406 doi:10.1007/BF02383230

    Article  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445 doi:10.1038/nature03543

    Article  PubMed  CAS  Google Scholar 

  • DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37:340–353 doi:10.1046/j.1365-313X.2003.01964.x

    Article  PubMed  CAS  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292 doi:10.1111/j.1365-3040.1989.tb01942.x

    Article  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945 doi:10.1126/science.1153795

    Article  PubMed  CAS  Google Scholar 

  • Doussan C, Vercambre G, Pagès L (1998) Modelling of the hydraulic architecture of root systems: An integrated approach to water absorption—Distribution of axial and radial conductances in maize. Ann Bot (Lond) 81:225–232 doi:10.1006/anbo.1997.0541

    Article  Google Scholar 

  • Doussan C, Vercambre G, Pages L (1999) Water uptake by two contrasting root systems (maize, peach tree): results from a model of hydraulic architecture. Agronomie 19:255–263 doi:10.1051/agro:19990306

    Article  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II–Modelling of water transfer in the soil root-system with explicit account of flow within the root system—Comparison with experiments. Plant Soil 283:101–119 doi:10.1007/s11104-004-7904-z

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley. II- Localised compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only one part of the root system. J Exp Bot 26:79–90 doi:10.1093/jxb/26.1.79

    Article  CAS  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794 doi:10.1073/pnas.0712307105

    Article  PubMed  Google Scholar 

  • Dunbabin V (2007) Simulating the role of rooting traits in crop-weed competition. Field Crops Res 104:44–51 doi:10.1016/j.fcr.2007.03.014

    Article  Google Scholar 

  • Dunbabin V, Diggle AJ, Rengel Z, van Hungten R (2002) Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239:19–38 doi:10.1023/A:1014939512104

    Article  CAS  Google Scholar 

  • Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72 doi:10.1007/s11104-005-0866-y

    Article  CAS  Google Scholar 

  • Douglas AE (2002) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Drew MC, He C-J, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127 doi:10.1016/S1360-1385(00)01570-3

    Article  PubMed  CAS  Google Scholar 

  • Einsmann JC, Jones RH, Pu M, Mitchell RJ (1999) Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J Ecol 87:609–619 doi:10.1046/j.1365-2745.1999.00376.x

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (2002) Root life span, efficiency and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 221–238

    Google Scholar 

  • Esch H, Hundeshagen B, Schneider-Poetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16 doi:10.1016/0168-9452(94)90115-5

    Article  CAS  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49 doi:10.1046/j.1469-8137.2003.00907.x

    Article  Google Scholar 

  • Fan MS, Bai RQ, Zhao XF, Zhang JH (2007) Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. J Integr Plant Biol 49:598–604 doi:10.1111/j.1744-7909.2007.00450.x

    Article  Google Scholar 

  • Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859 doi:10.1046/j.1365-2745.1999.00396.x

    Article  Google Scholar 

  • Fieschi M, Alloatti G, Sacco S, Berta G (1992) Cell membrane potential hyperpolarisation in vesicular arbuscular mycorrhizae of Allium porrum L.: a non-nutritional long-distance effect of the fungus. Protoplasma 168:136–140 doi:10.1007/BF01666259

    Article  Google Scholar 

  • Fitz Gerald JN, Lehti-Shiu MD, Ingram PA, Deak KI, Biesiada T, Malamy JE (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498 doi:10.1534/genetics.105.047555

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, pp 37–42

    Google Scholar 

  • Fitter A (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77

    Google Scholar 

  • Fitter A (2002) Characteristics and functions of roots systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 15–32

    Google Scholar 

  • Fitter AH (2004) Magnolioid root-hairs, architecture and mycorrhizal dependency. New Phytol 164:15–16 doi:10.1111/j.1469-8137.2004.01193.x

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems. 2: Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389 doi:10.1111/j.1469-8137.1991.tb00019.x

    Article  Google Scholar 

  • Forbes PJ, Ellison CH, Hooker JE (1996) The impact of arbuscular mycorrhizal fungi and temperature on root system development. Agronomie 16:617–620 doi:10.1051/agro:19961004

    Article  Google Scholar 

  • Fourcaud T, Zhang X, Stokes A, Lambers H, Korner C (2008) Plant growth modeling and applications: the increasing importance of plant architecture in growth models. Ann Bot (Lond) 101:1053–1063 doi:10.1093/aob/mcn050

    Article  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494 doi:10.1105/tpc.106.048538

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168 doi:10.1046/j.0960-7412.2001.01201.x

    Article  PubMed  CAS  Google Scholar 

  • Fusconi A, Berta G, Tagliasacchi AM, Scannerini S, Trotta A, Gnavi E, De Padova S (1994) Root apical meristems of arbuscular mycorrhizae of Allium porrum L. Environ Exp Bot 43:181–193 doi:10.1016/0098-8472(94)90037-X

    Article  Google Scholar 

  • Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142:505–516 doi:10.1046/j.1469-8137.1999.00410.x

    Article  Google Scholar 

  • Fusconi A, Tagliasacchi AM, Berta G, Trotta A, Brazzaventre S, Ruberti F, Scannerini S (2000) Root apical meristems of Allium porrum L. as affected by arbuscular mycorrhizae and phosphorus. Protoplasma 214:219–226 doi:10.1007/BF01279066

    Article  CAS  Google Scholar 

  • Fusconi A, Lingua G, Trotta A, Berta G (2005) Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza 15:313–321 doi:10.1007/s00572-004-0338-x

    Article  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300 doi:10.1046/j.1469-8137.2002.00460.x

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192 doi:10.1007/s00572-003-0256-3

    Article  PubMed  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which the phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124 doi:10.1007/BF02374754

    Article  CAS  Google Scholar 

  • Garthwaite AJ, Steudle E, Colmer TD (2006) Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. J Exp Bot 57:655–664 doi:10.1093/jxb/erj055

    Article  PubMed  CAS  Google Scholar 

  • Ge Z, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: Results from a geometric simulation model. Plant Soil 218:159–171 doi:10.1023/A:1014987710937

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400 doi:10.1242/dev.00926

    Article  PubMed  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810 doi:10.1046/j.1365-3040.1999.00441.x

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181 doi:10.1111/j.1469-8137.2004.01145.x

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823 doi:10.1038/nature03610

    Article  PubMed  CAS  Google Scholar 

  • Grilli-Caiola M (2002) Cycad coralloid roots housing cyanobacteria. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 399–409

    Google Scholar 

  • Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Company of Biologists, Cambridge, pp 5–30

    Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386 doi:10.1105/tpc.105.030841

    Article  PubMed  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Harper JL, Jones M, Hamilton NR (1991) The evolution of roots and the problem of analysing their behaviour. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell Scientific Publications, Oxford, pp 3–24

    Google Scholar 

  • He C-J, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    PubMed  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916 doi:10.1111/j.1365-313X.2005.02575.x

    Article  PubMed  CAS  Google Scholar 

  • Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inzé D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101:5146–5151 doi:10.1073/pnas.0308702101

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303 doi:10.1111/j.1469-8137.2005.01512.x

    Article  PubMed  CAS  Google Scholar 

  • Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133 doi:10.1007/s10310-006-0260-5

    Article  Google Scholar 

  • Hishi T, Takeda H (2005) Life cycles of individual roots in fine root system of Chamaecyparis obtusa Sieb. et Zucc. J For Res 10:181–187 doi:10.1007/s10310-004-0120-0

    Article  Google Scholar 

  • Hoad SP, Russel G, Lucas ME, Bingham IJ (1992) The management of wheat, barley and oat root systems. Adv Agron 74:193–246 doi:10.1016/S0065-2113(01)74034-5

    Article  Google Scholar 

  • Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programs. Ann Bot (Lond) 93:359–368 doi:10.1093/aob/mch056

    Article  CAS  Google Scholar 

  • Hodge A (2001a) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734 doi:10.1046/j.0028-646x.2001.00200.x

    Article  CAS  Google Scholar 

  • Hodge A (2001b) Foraging and the exploitation of soil nutrient patches: in defence of roots. Funct Ecol 15:416 doi:10.1046/j.1365-2435.2001.00519.x

    Article  Google Scholar 

  • Hodge A (2003a) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonisation. New Phytol 157:303–314 doi:10.1046/j.1469-8137.2003.00662.x

    Article  Google Scholar 

  • Hodge A (2003b) N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 54:2331–2342 doi:10.1093/jxb/erg249

    Article  PubMed  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24 doi:10.1111/j.1469-8137.2004.01015.x

    Article  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411 doi:10.1093/jxb/eri280

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Alexander IJ, Gooday GW (1995) Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi. Mycol Res 99:934–941 doi:10.1016/S0953-7562(09)80752-1

    Article  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol 139:479–494 doi:10.1046/j.1469-8137.1998.00216.x

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999a) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820 doi:10.1046/j.1365-3040.1999.00454.x

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999b) Nitrogen capture by plants grown in N-rich organic patches of contrasting size and strength. J Exp Bot 50:1243–1252 doi:10.1093/jexbot/50.336.1243

    Article  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999c) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31:1517–1530 doi:10.1016/S0038-0717(99)00070-X

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000a) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308 doi:10.1016/S1360-1385(00)01656-3

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000b) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. New Phytol 145:575–584 doi:10.1046/j.1469-8137.2000.00602.x

    Article  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000c) Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species. Funct Ecol 14:575–584 doi:10.1046/j.1365-2435.2000.t01-1-00470.x

    Article  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000d) Competition between roots and micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol 88:150–164 doi:10.1046/j.1365-2745.2000.00434.x

    Article  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000e) Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil. Soil Biol Biochem 32:1763–1772 doi:10.1016/S0038-0717(00)00095-X

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299 doi:10.1038/35095041

    Article  PubMed  CAS  Google Scholar 

  • Insalud N, Bell RW, Colmer TC, Rerkasem B (2006) Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot (Lond) 98:995–1004 doi:10.1093/aob/mcl194

    Article  CAS  Google Scholar 

  • Ivanchenko MG, Coffeen WC, Lomax TL, Dubrovsky JG (2006) Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant J 46:436–447 doi:10.1111/j.1365-313X.2006.02702.x

    Article  PubMed  CAS  Google Scholar 

  • Jackson M, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287 doi:10.1111/j.1438-8677.1999.tb00253.x

    Article  CAS  Google Scholar 

  • Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–60 doi:10.1038/344058a0

    Article  PubMed  CAS  Google Scholar 

  • Jackson RB, Mooney HA, Schulze E-D (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–7366 doi:10.1073/pnas.94.14.7362

    Article  PubMed  CAS  Google Scholar 

  • Jaillard B, Schneider A, Mollier A, Pellerin S (2000) Modélisation du prélèvement minéral par les plantes fondée sur le fonctionnement bio-physico-chimique de la rhizosphère. In: Maillard P, Bonhomme R (eds) Fonctionnement des peuplements végétaux sous contraintes environnementales. Coll. INRA 93:253-287

  • Javaux M, Schroder T, Vanderborght J (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1088 doi:10.2136/vzj2007.0115

    Article  Google Scholar 

  • Jenik PD, Gillmor CS, Lukowitz W (2007) Embryonic patterning in Arabidopsis thaliana. Annu Rev Cell Dev Biol 23:207–236 doi:10.1146/annurev.cellbio.22.011105.102609

    Article  PubMed  CAS  Google Scholar 

  • Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Plant Physiol 112:19–30 doi:10.1104/pp.112.1.31

    Article  PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere- a critical review. Plant Soil 205:25–44 doi:10.1023/A:1004356007312

    Article  CAS  Google Scholar 

  • Jones D, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480 doi:10.1111/j.1469-8137.2004.01130.x

    Article  CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa). New Phytol 118:49–62 doi:10.1111/j.1469-8137.1991.tb00564.x

    Article  CAS  Google Scholar 

  • Kaldorf M, Ludwig-Müller J (2000) AM fungi affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67 doi:10.1034/j.1399-3054.2000.100109.x

    Article  CAS  Google Scholar 

  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150 doi:10.1093/jxb/erl274

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Suganuma N, Tamaoki M, Kouchi H (2001) Two types of pea leghemoglobin genes showing different O2-binding affinities and distinct patterns of spatial expression in nodules. Plant Physiol 125:641–651 doi:10.1104/pp.125.2.641

    Article  PubMed  CAS  Google Scholar 

  • Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478 doi:10.1046/j.1365-3040.1998.00300.x

    Article  CAS  Google Scholar 

  • Kembel SW, Cahill JF Jr (2005) Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am Nat 166:216–230 doi:10.1086/431287

    Article  PubMed  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    Article  PubMed  CAS  Google Scholar 

  • Kirk GJD (2003) Rice root properties for internal aeration and efficient nutrient acquisition in submerged soils. New Phytol 159:185–194 doi:10.1046/j.1469-8137.2003.00793.x

    Article  CAS  Google Scholar 

  • Kirk GJD, Van DL (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200 doi:10.1046/j.1469-8137.1997.00640.x

    Article  CAS  Google Scholar 

  • Klepper B (1992) Development and growth of crop root systems. Adv Soil Sci 19:1–25

    Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729 doi:10.1073/pnas.0609929104

    Article  PubMed  CAS  Google Scholar 

  • Kutschera L (1960) Wurzelatlas mitleleuropaïsher Ackerunkräuter und Kulturpflanzen. Verlag Pub., Franckfurt am Main

    Google Scholar 

  • Laan P, Smolders A, Blom CWPM, Armstrong W (1989) The relative roles of internal aeration, radical oxygen losses, iron exclusion and nutrient balances in flood-tolerance of Rumex species. Acta Bot Neer 38:131–145

    Google Scholar 

  • Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol 73:985–996 doi:10.1111/j.1469-8137.1974.tb01327.x

    Article  Google Scholar 

  • Lamont B (2003) Structure, ecology and physiology of root clusters–a review. Plant Soil 248:1–19 doi:10.1023/A:1022314613217

    Article  CAS  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900 doi:10.1105/tpc.107.055863

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP (1995) Effects of infection by Pythium spp. on root system morphology of Alfalfa seedlings. Phytopathol 85:430–435 doi:10.1094/Phyto-85-430

    Article  Google Scholar 

  • Laskov C, Horn O, Hupfer M (2006) Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus. Aquat Bot 84:333–340 doi:10.1016/j.aquabot.2005.12.005

    Article  CAS  Google Scholar 

  • Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792 doi:10.1093/pcp/pcj043

    Article  PubMed  CAS  Google Scholar 

  • Lazof D, Rufty TW, Redingbaugh MG (1992) Localization of nitrate absorption and translocation within morphological regions of corn roots. Plant Physiol 100:1251–1258 doi:10.1104/pp.100.3.1251

    Article  PubMed  CAS  Google Scholar 

  • Lecompte F, Ozier-Lafontaine H, Pagès L (2001) The relationships between static and dynamic variables in the description of root growth. Consequences for field interpretation of rooting variability. Plant Soil 236:19–31 doi:10.1023/A:1011924529885

    Article  CAS  Google Scholar 

  • Lecompte F, Pagès L (2007) Apical diameter and branching density affect lateral root elongation rates in banana. Environ Exp Bot 59:243–251 doi:10.1016/j.envexpbot.2006.01.002

    Article  Google Scholar 

  • Lemanceau P, Offre P, Mougel C, Gamalero E, Dessaux Y, Moënne-Loccoz Y, Berta G (2005) Microbial ecology of the rhizosphere. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI Publishing, Wallingford, pp 228–230

    Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207 doi:10.1111/j.1469-8137.2008.02630.x

    Article  PubMed  CAS  Google Scholar 

  • Le Quéré A, Schützendübel A, Rajashekar B, Canbäck B, Hedh J, Erland S, Johansson T, Anders Tunlid A (2004) Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Mol Ecol 12:3809–3819 doi:10.1111/j.1365-294X.2004.02369.x

    Article  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–R433 doi:10.1016/j.cub.2006.05.014

    Article  PubMed  CAS  Google Scholar 

  • Lloret PG, Casero PJ (2002) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 127–156

    Google Scholar 

  • Lingua G, Sgorbati S, Citterio A, Fusconi A, Trotta A, Gnavi E, Berta G (1999) Arbuscular mycorrhizal colonization delays nucleus senescence in leek root cortical cells. New Phytol 141:161–169 doi:10.1046/j.1469-8137.1999.00328.x

    Article  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400 doi:10.1023/A:1015255030047

    Article  PubMed  CAS  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104 doi:10.1105/tpc.104.029272

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen B, Brix H, Mendelssohn IA, McKee KL, Miao SL (2001) Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat Bot 70:117–133 doi:10.1016/S0304-3770(01)00155-3

    Article  CAS  Google Scholar 

  • Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753 doi:10.1007/s00122-004-1900-9

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512 doi:10.1071/BT06118

    Article  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging–an architectural adaptation of plants to low phosphorus avaibility. Plant Soil 237:225–237 doi:10.1023/A:1013324727040

    Article  CAS  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77 doi:10.1111/j.1365-3040.2005.01306.x

    Article  PubMed  CAS  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklof J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597 doi:10.1105/tpc.010354

    Article  PubMed  CAS  Google Scholar 

  • Masle J (2002) High soil strength: mechanical forces at play on root morphogenesis. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 807–820

    Google Scholar 

  • Materechera SA, Dexter AR, Alston AM (1991) Penetration of very strong soils by seedling roots of different plant species. Plant Soil 135:31–41 doi:10.1007/BF00014776

    Article  Google Scholar 

  • Materechera SA, Alston AM, Kirby JM, Dexter AR (1992) Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144:297–303 doi:10.1007/BF00012888

    Article  Google Scholar 

  • McMichael BL, Burke JJ (2002) Temperature effects on root growth. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 717–728

    Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have relatively high porosity and a barrier to radical oxygen loss. Plant Cell Environ 24:585–596 doi:10.1046/j.0016-8025.2001.00707.x

    Article  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451 doi:10.1046/j.0016-8025.2001.00817.x

    Article  Google Scholar 

  • Mendoza R, Escudero V, Garcia I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275:305–315 doi:10.1007/s11104-005-2501-3

    Article  CAS  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614 doi:10.1104/pp.124.2.609

    Article  PubMed  CAS  Google Scholar 

  • Mistrik I, Mistrikova I (1995) Uptake, transport and metabolim of phosphate by individual roots of Zea mays L. Biologia (Bratisl) 50:419–426

    CAS  Google Scholar 

  • Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714 doi:10.1101/gad.1187704

    Article  PubMed  Google Scholar 

  • Nardon P, Charles H (2002) Morphological aspects of symbiosis. In: Seckbach J (ed) Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, Dordrecht, pp 13–44

    Google Scholar 

  • Navara J (1987) Participation of individual root types in water uptake by maize seedlings. Biologia (Bratisl) 42:17–26

    Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167 doi:10.1016/S1360-1385(02)02241-0

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382 doi:10.1007/s004250050572

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411 doi:10.1016/S0169-5347(00)89157-0

    Article  Google Scholar 

  • Noelle W (1910) Studin zur vergleighenden anatomie und morphologie der koniferenwuzeIn mit rücksicht auf die systematik. Botanik. Zeit 68:169–266

    Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073 doi:10.1017/S0953756299002191

    Article  Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198 doi:10.1007/BF02257524

    Article  CAS  Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66 doi:10.1104/pp.94.1.59

    Article  PubMed  CAS  Google Scholar 

  • Nowack B, Mayer KU, Oswald SE, van Beinum W, Appelo CAJ, Jacques D, Seutjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321 doi:10.1007/s11104-006-9017-3

    Article  CAS  Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2007) Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. Development 134:2959–2968 doi:10.1242/dev.006296

    Article  PubMed  CAS  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207 doi:10.1111/j.1365-313X.2005.02522.x

    Article  PubMed  CAS  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root ystem architecture. Annu Rev Plant Biol 58:93–113 doi:10.1146/annurev.arplant.58.032806.104006

    Article  PubMed  CAS  Google Scholar 

  • Pagès L (2002) Modeling root system architecture. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Pub, New York, pp 359–382

    Google Scholar 

  • Pagès L, Doussan C, Vercambre G (2000) An introduction on below ground environment and ressource acquisition with special reference on trees—Simulation models should include plant structure and function. Ann Sci 57:513–520 doi:10.1051/forest:2000138

    Article  Google Scholar 

  • Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177 doi:10.1016/j.tplants.2005.02.009

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306 doi:10.1016/S0168-9525(03)00117-3

    Article  PubMed  CAS  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chriqui D, Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148 doi:10.1104/pp.107.107870

    Article  PubMed  CAS  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406 doi:10.1046/j.1365-313x.2001.00970.x

    Article  PubMed  CAS  Google Scholar 

  • Pellerin S (1993) Rate of differentiation and emergence of nodal maize roots. Plant Soil 148:155–161 doi:10.1007/BF00012853

    Article  Google Scholar 

  • Pellerin S, Tabourel F (1995) Length of the apical unbranched zone of maize axile roots: its relationship to root elongation rate. Environ Exp Bot 35:193–200 doi:10.1016/0098-8472(94)00043-5

    Article  Google Scholar 

  • Personeni E, Nguyen C, Marchal P, Pagès L (2007) Experimental evaluation of an efflux-influx model of C exudation by individual apical root segments. J Exp Bot 58:2091–2099 doi:10.1093/jxb/erm065

    Article  PubMed  CAS  Google Scholar 

  • Pierret A, Moran CJ, Pankurst CE (1999) Differentiation of soil properties related to the spatial association of wheat roots and soil macropores. Plant Soil 211:51–58 doi:10.1023/A:1004490800536

    Article  CAS  Google Scholar 

  • Pierret A, Moran CJ, Doussan C (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967–980 doi:10.1111/j.1469-8137.2005.01389.x

    Article  PubMed  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281 doi:10.2136/vzj2006.0067

    Article  Google Scholar 

  • Playsted CWS, Johnston M, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500 doi:10.1111/j.1469-8137.2006.01697.x

    Article  PubMed  CAS  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580 doi:10.1111/j.1469-8137.1993.tb03905.x

    Article  Google Scholar 

  • Pritchard SG, Strand AE (2008) Can you believe what you see? Reconciling minirhizotron and isotopically derived estimates of fine root longevity. New Phytol 177:287–291

    PubMed  Google Scholar 

  • Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50 doi:10.1071/BT9600038

    Article  Google Scholar 

  • Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704 doi:10.1105/tpc.105.034959

    Article  PubMed  CAS  Google Scholar 

  • Ranathuge K, Steudle E, Lafitte R (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205

    Google Scholar 

  • Rasse DP, Smucker AJM (1998) Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–212 doi:10.1023/A:1004343122448

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance. New Phytol 157:475–492 doi:10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  • Reddy KR, Patrick WH Jr, Lindau CW (1989) Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol Oceanogr 34:1004–1013

    CAS  Google Scholar 

  • Reynolds HL, d’Antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97 doi:10.1007/BF02257566

    Article  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54 doi:10.1105/tpc.105.037796

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (1991) Roots and ressource fluxes in plants and communities. In: Atkinson D (ed) Plant root growth: an ecological perspective. Special publication of the British ecological society n°10. Blackwell Scientific Pub., London, pp 103–130

    Google Scholar 

  • Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50 doi:10.1023/A:1010377818094

    Article  CAS  Google Scholar 

  • Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc R Soc Lond B Biol Sci 265:431–435

    Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903 doi:10.1046/j.1365-3040.2001.00741.x

    Article  CAS  Google Scholar 

  • Rubio G, Oesterheld M, Alvarez CR, Lavado RS (1997) Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics. Oecologia 112:150–155 doi:10.1007/s004420050294

    Article  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorsk’a R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212 doi:10.1105/tpc.107.052126

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358 doi:10.1101/gad.252503

    Article  PubMed  CAS  Google Scholar 

  • Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol 129:325–336 doi:10.1111/j.1469-8137.1995.tb04303.x

    Article  CAS  Google Scholar 

  • Sampò S, Avidano L, Berta G (2007) Morphogenetic effects induced by pathogenic and non pathogenic Rhizoctonia solani Kühn strains on tomato roots. Caryologia 60:1–20

    Google Scholar 

  • Sadowsky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. In: Wernerand D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, The Netherlands, pp 89–10

    Chapter  Google Scholar 

  • Sarquis JI, Jordon WR, Morgan PW (1991) Ethylene evolution from maize (Zea mays L.) seedling roots and shoots in response to mechanical impedance. Plant Physiol 96:1171–1177 doi:10.1104/pp.96.4.1171

    Article  PubMed  CAS  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot (Lond) 67:135–141

    Google Scholar 

  • Schenk HJ, Jackson RB (2002a) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494 doi:10.1046/j.1365-2745.2002.00682.x

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002b) The global biogeography of roots. Ecol Monogr 73:311–328

    Article  Google Scholar 

  • Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol 171:669–682

    PubMed  CAS  Google Scholar 

  • Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693 doi:10.1104/pp.116.2.687

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125 doi:10.1007/s11104-004-2725-7

    Article  CAS  Google Scholar 

  • Shane MW, De Vos M, De Roock S, Lambers H (2003) Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273 doi:10.1046/j.1365-3040.2003.00957.x

    Article  CAS  Google Scholar 

  • Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165:887–898 doi:10.1111/j.1469-8137.2004.01283.x

    Article  PubMed  CAS  Google Scholar 

  • Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized “dauciform” roots of Cyperaceae are structurally distinct, but functionally analogous with “cluster” roots. Plant Cell Environ 29:1989–1999 doi:10.1111/j.1365-3040.2006.01574.x

    Article  PubMed  CAS  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemisty 27:35–60

    Google Scholar 

  • Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecol 84:239–246 doi:10.2307/2261359

    Article  CAS  Google Scholar 

  • Shaul-Keinan O, Gadkal V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Arzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507 doi:10.1046/j.1469-8137.2002.00388.x

    Article  CAS  Google Scholar 

  • Signora L, De Smet I, Foyer CH, Zhang HM (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662 doi:10.1046/j.1365-313x.2001.01185.x

    Article  PubMed  CAS  Google Scholar 

  • Singh MB, Bhalla PL (2006) Plant stem cells carve their own niche. Trends Plant Sci 11:241–246 doi:10.1016/j.tplants.2006.03.004

    Article  PubMed  CAS  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064 doi:10.1046/j.1365-2745.1998.00326.x

    Article  Google Scholar 

  • Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148:4–6

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd Edn. Academic Press, London

    Google Scholar 

  • Smits AJM, Laan P, Thier RH, van der Velde G (1990) Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to sediment type of their habitat. Aquat Bot 38:3–17 doi:10.1016/0304-3770(90)90095-3

    Article  Google Scholar 

  • Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293 doi:10.1023/A:1004378602378

    Article  CAS  Google Scholar 

  • Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336 doi:10.1016/j.aquabot.2006.07.001

    Article  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627 doi:10.1105/tpc.104.026690

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242 doi:10.1105/tpc.105.033365

    Article  PubMed  CAS  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589 doi:10.1111/j.1365-3040.2007.01639.x

    Article  PubMed  CAS  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Laurent Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796 doi:10.1038/ng2041

    Article  PubMed  CAS  Google Scholar 

  • Swarup R, Bennett M (2003) Auxin transport: the fountain of life in plants? Dev Cell 5:824–826 doi:10.1016/S1534-5807(03)00370-8

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Katerji N (1991) Plant-response to the soil-water reserve: consequences of the root-system environment. Irrig Sci 12:145–152 doi:10.1007/BF00192286

    Article  Google Scholar 

  • Tatsumi J, Yamauchi A, Kono Y (1989) Fractal analysis of plant root systems. Ann Bot (Lond) 64:499–503

    Google Scholar 

  • Thaler P, Pagès L (1999) Why are laterals less affected than main axes by homogeneous unfavourable physical conditions? A model-based hypothesis. Plant Soil 217:151–157 doi:10.1023/A:1004677128533

    Article  Google Scholar 

  • Thomson CJ, Colmer TD, Watkins I, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344 doi:10.1111/j.1469-8137.1992.tb01073.x

    Article  Google Scholar 

  • Tisserant B, Schellenbaum L, Gianinazzi-Pearson V, Gianinazzi S, Berta G (1992) Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia. Allionia 30:173–183

    Google Scholar 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947–1955 doi:10.1139/b96-233

    Article  Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35 doi:10.1023/A:1026430019738

    Article  CAS  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne pathogen Phytophthora nicotianae var parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209 doi:10.1007/BF02257525

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712 doi:10.1023/A:1014897607670

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050 doi:10.1105/tpc.105.035493

    Article  PubMed  CAS  Google Scholar 

  • Van Noordwijk M, Mulia R (2002) Functional branch analysis as tool for fractal scaling above and belowground trees for their additive and non-additive properties. Ecol Modell 149:41–51 doi:10.1016/S0304-3800(01)00513-0

    Article  Google Scholar 

  • van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192 doi:10.1007/BF00011582

    Article  Google Scholar 

  • Van Bodegom P, Goudriaan J, Leffelaar P (2001) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeochemistry 55:145–177 doi:10.1023/A:1010640515283

    Article  Google Scholar 

  • Varney GT, McCully ME (1991a) The branch roots of Zea: I–First order branches, their number, sizes and division into classes. Ann Bot (Lond) 67:357–364

    Google Scholar 

  • Varney GT, McCully ME (1991b) The branch root of Zea. II. Developmental loss of the apical meristem in field grown roots. New Phytol 118:535–546 doi:10.1111/j.1469-8137.1991.tb00993.x

    Article  Google Scholar 

  • Vercambre G, Doussan C, Pagès L, Habib R, Pierret A (2002) Influence of xylem development on axial hydraulic conductance within Prunus root systems. Trees Struct Funct 16:479–487

    Google Scholar 

  • Vercambre G, Pagès L, Doussan C, Habib R (2003) Architectural analysis and synthesis of the plum tree root system in orchard using a quantitative modelling approach. Plant Soil 251:1–11 doi:10.1023/A:1022961513239

    Article  CAS  Google Scholar 

  • Vierheilig H (2004) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339–341 doi:10.1078/0176-1617-01097

    Article  PubMed  CAS  Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T, Weimken A (1994) Ethylene biosynthesis and α-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. Plant Physiol 143:337–343

    CAS  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514 doi:10.1046/j.1365-3059.2000.00473.x

    Article  Google Scholar 

  • Visser EJW, Bögemann GM (2006) Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171:305–314 doi:10.1111/j.1469-8137.2006.01764.x

    Article  PubMed  CAS  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek CJ (2000) Changes in growth, porosity, and radical oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245 doi:10.1046/j.1365-3040.2000.00628.x

    Article  Google Scholar 

  • Voesenek LACJ, Armstrong W, Bogemann GM, McDonald MP, Colmer TD (1999) A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust J Plant Physiol 26:87–93

    Article  Google Scholar 

  • Wahid PA (2000) A system of classification of woody perennials based on their root activity patterns. Agrofor Syst 49:123–130 doi:10.1023/A:1006309927504

    Article  Google Scholar 

  • Waisel Y, Eshel A (1992) Differences in ion uptake among roots of various types. J Plant Nutr 15:945–958 doi:10.1080/01904169209364373

    Article  CAS  Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosyst 58:349–356 doi:10.1023/A:1009879610785

    Article  CAS  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301 doi:10.1080/07352680600709917

    Article  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216 doi:10.1105/tpc.105.033076

    Article  PubMed  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of Lupinus albus L. grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716 doi:10.1104/pp.120.3.705

    Article  PubMed  CAS  Google Scholar 

  • Weaver JE (1926) Root development of field crops. McGraw-Hill, New York Pub

    Google Scholar 

  • Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006a) Isoflavonoid exudation from white lupin is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668

    PubMed  CAS  Google Scholar 

  • Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006b) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927 doi:10.1111/j.1365-3040.2005.01473.x

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550 doi:10.1105/tpc.014928

    Article  PubMed  CAS  Google Scholar 

  • Whalley WR, Dexter AR (1993) The maximum axial growth pressure of roots of spring and autumn cultivars of lupin. Plant Soil 157:313–318 doi:10.1007/BF00011059

    Article  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795 doi:10.1038/364794a0

    Article  CAS  Google Scholar 

  • Wu L, McGechan MB, Watson CA, Baddeley JA (2005) Developing existing plant root system architecture models to meet future, agricultural challenges. Adv Agron 85:181–219 doi:10.1016/S0065-2113(04)85004-1

    Article  Google Scholar 

  • Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170 doi:10.1038/nature00998

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Nakamoto T (1983) Primary root formation in growing shoots of several cereal crops. Jpn J Crop Sci 52:342–348

    Google Scholar 

  • Yavitt JB, Lang GE (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46 doi:10.1080/01490459009377876

    Article  CAS  Google Scholar 

  • Zaïd EH, Arahou M, Diem HG, Morabet RE (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235 doi:10.1023/A:1022320227637

    Article  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409 doi:10.1126/science.279.5349.407

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338 doi:10.1093/jxb/erm114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AH thanks Alastair Fitter, Anna Armstrong and Deirdre Rooney for comments on the ‘Root Function’ and ‘Root Response to Abiotic Stress’ sections. We also thank three anonymous referees for their comments which helped greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Hodge.

Additional information

Responsible Editor: Yves Dessaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodge, A., Berta, G., Doussan, C. et al. Plant root growth, architecture and function. Plant Soil 321, 153–187 (2009). https://doi.org/10.1007/s11104-009-9929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9929-9

Keywords

Navigation