Skip to main content
Log in

Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Studies on the combined effects of beech-spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via litterfall, throughfall (+ stemflow) and soil solution were measured in adjacent stands of pure spruce, mixed spruce-beech and pure beech on a nutrient rich site at Kreisbach, as well as in adjacent spruce and mixed stands on a nutrient poor site at Frauschereck to evaluate the impact of tree species composition (spruce versus beech) on these parameters. The highest recorded throughfall (+ stemflow) fluxes were 22.4 kg N ha−1 and 9.6 kg S ha−1 yr−1 and increased from beech over the mixed to the spruce stand at Kreisbach, but were similar for both stands at Frauschereck. At Frauschereck, atmospheric inputs were more or less reflected in element outputs, slightly modified by tree species composition. At Kreisbach, there was hardly any linkage between nutrient inputs and outputs. Our overall conclusion is that tree species composition affects forest nutrition, atmospheric input and consequently soil solution chemistry and input–output budgets of nutrients. However, these effects are site specific and dependent on the studied chemical element and process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276 doi:10.1023/A:1013989419580

    Article  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Sci 59:233–253 doi:10.1051/forest:2002020

    Article  Google Scholar 

  • Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G (2007) Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim Cosmochim Acta 71:3182–3192 doi:10.1016/j.gca.2007.04.028

    Article  CAS  Google Scholar 

  • Berger TW, Hager H (2000) Physical top soil properties in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manage 136:159–172

    Article  Google Scholar 

  • Berger TW, Tartowski SL, Likens GE (1997) Trifluoroacetate retention in a northern hardwood forest soil. Environ Sci Technol 31:1916–1921 doi:10.1021/es960667e

    Article  CAS  Google Scholar 

  • Berger TW, Eagar C, Likens GE, Stingeder G (2001) Effects of calcium and aluminum chloride additions on foliar and throughfall chemistry in sugar maples. For Ecol Manage 149:75–90

    Article  Google Scholar 

  • Berger TW, Neubauer C, Glatzel G (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manage 159:3–14

    Article  Google Scholar 

  • Berger TW, Köllensperger G, Wimmer R (2004) Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant Soil 264:69–83 doi:10.1023/B:PLSO.0000047714.43253.25

    Article  CAS  Google Scholar 

  • Berger TW, Swoboda S, Prohaska T, Glatzel G (2006) The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). For Ecol Manage 229:234–246

    Article  Google Scholar 

  • Berger TW, Untersteiner H, Schume H, Jost G (2008) Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand. For Ecol Manage 255:605–618

    Article  Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89–106 doi:10.1023/A:1005948126251

    Article  Google Scholar 

  • Blum WEH, Danneberg OH, Glatzel G, Grall H, Kilian W, Mutsch F, Stöhr D (1989) Waldbodenuntersuchung-Geländeaufnahme, Probennahme, Analyse-Empfehlungen zur Vereinheitlichung der Vorgangsweise in Österreich. Österreichische Bodenkundliche Gesellschaft, ISBN 3-900 491-02-3, Vienna, p 55

  • Bücking W, Steinle R (1991) Untersuchungen zum Gesundheitszustand der Bäume und zum Stoffeintrag in naturnahe Waldökosysteme (Bannwälder) Baden-Württembergs. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, p 160

  • Croise L, Cluzeau C, Ulrich E, Lanier M, Gomez A (1999) RENECOFOR—Interprétation des analyses foliaires réalisées dans les 102 peuplements du réseau de 1993 a 1997 et premières évaluations interdisciplinaires. Ed. Office National des Forêts, Département Recherche et Développement, p 413

  • De Schrijver A, Nachtergale L, Staelens J, Luyssaert S, De Keersmaeker L (2004) Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut 131:93–105 doi:10.1016/j.envpol.2004.01.019

    Article  PubMed  Google Scholar 

  • De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674 doi:10.1007/s00442-007-0776-1

    Article  PubMed  Google Scholar 

  • De Vries W, Van der Salm C, Reinds GJ, Erisman JW (2007) Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environ Pollut 148:501–513 doi:10.1016/j.envpol.2006.12.001

    Article  PubMed  Google Scholar 

  • Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environ Pollut 102:453–456

    Article  Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung-Ergebnisse des Solling-Projekts 1966–1986. Ulmer, Stuttgart, p 507

    Google Scholar 

  • Ende H-P (1991) Wirkung von Mineraldünger in Buchen- und Fichtenbeständen des Grundgebirgs-Schwarzwaldes. Freiburger Bodenkundliche Abh 27:98

    Google Scholar 

  • Federer CA (2004) BROOK 90: A simulation model for evaporation, soil water, and stemflow, Version 4.4e. Computer Freeware and documentation. C. Anthony Federer, Compass Brook, 15 Oyster River Rd., Durham NH 03824. http://home.maine.rr.com/stfederer/brook90.htm. Accessed 18 Sept 2008

  • Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrometeorol 4:1276–1290 doi:10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2

    Article  Google Scholar 

  • Finzi AC, Canham CD (1998) Non-additive effects of litter mixtures on net N mineralization in a southern New England forest. For Ecol Manage 105:129–136

    Article  Google Scholar 

  • Flückinger W, Braun S (1998) Nitrogen deposition in Swiss forests and ist possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environ Pollut 102(S1):69–76 doi:10.1016/S0269-7491(98)80017-1

    Article  Google Scholar 

  • Glatzel G, Katzensteiner K, Kazda M, Kühnert M, Markart G, Stöhr D (1988) Deposition langzeitwirksamer Luftschadstoffe in Wäldern und Einfluss auf den Ionenhaushalt. Forschungsbericht 1988, Institut für Forstökologie, Univ. f. Bodenkultur, Vienna, p 47

  • Gundersen P, Callesen I, De Vries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407 doi:10.1016/S0269-7491(98)80060-2

    Article  CAS  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14:1–57 doi:10.1139/a05-015

    Article  CAS  Google Scholar 

  • Hanchi A, Rapp M (1997) Stemflow determination in forest stands. For Ecol Manage 97:231–235

    Article  Google Scholar 

  • Heitz R (1998) Umbau von Fichtenreinbeständen in naturnahe Mischwälder-Auswirkungen auf bodenchemischen Zustand und Bioelementhaushalt. Dissertation, Ludwig-Maximilians-Univ., München, p 307

    Google Scholar 

  • Hüttl RF 1986 Forest Fertilization: Results from Germany, France and the Nordic Countries. The Fertiliser Society, Proceedings No. 250, Purley Press Ltd. p 40

  • Jost G, Schume H, Hager H (2004) Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.)—Norway spruce [Picea abies (L.) Karst.] stand. Eur J For Res 123:93–104

    Google Scholar 

  • Kopp U (2000) Vergleich von direkten und indirekten Methoden zur Bestimmung des Blattflächenindex bei Fichten und Buchen. Untersuchung des Kronenaufbaus bei Fichten. Diploma Thesis, Univ. f. Bodenkultur, Vienna, p 82

    Google Scholar 

  • Kreutzer K, Deschu E, Hösl G (1986) Vergleichende Untersuchungen über den Einfluß von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvatica L.) auf die Sickerwasserqualität. Forstw Cbl 105:364–371 doi:10.1007/BF02741744

    Article  Google Scholar 

  • Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004) Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems (N Y, Print) 7:180–192 doi:10.1007/s10021-003-0216-y

    Article  CAS  Google Scholar 

  • Likens GE, Driscoll CD, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41:89–173 doi:10.1023/A:1005984620681

    Article  CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–316 doi:10.1023/A:1020972100496

    Article  CAS  Google Scholar 

  • Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027 doi:10.2307/2405064

    Article  Google Scholar 

  • Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232 doi:10.1007/s10533-004-0357-x

    Article  CAS  Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Change Biol 8:1028–1033 doi:10.1046/j.1365-2486.2002.00532.x

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, p 889

    Google Scholar 

  • Martinson L, Lamersdorf N, Warfvinge P (2005) The Solling roof revisited—slow recovery from acidification observed and modeled despite a decade of “clean-rain” treatment. Environ Pollut 135:293–302 doi:10.1016/j.envpol.2004.09.022

    Article  PubMed  CAS  Google Scholar 

  • Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Solling. Berichte des Forschungszentrums Waldökosysteme/Waldsterben. Reihe A 40:217

    Google Scholar 

  • McLaughlin SB, Wimmer R (1999) Tansley review no. 104—Calcium physiology and its role in terrestrial ecosystem processes. New Phytol 142:373–417 doi:10.1046/j.1469-8137.1999.00420.x

    Article  CAS  Google Scholar 

  • Mucina L, Grabherr G, Ellmauer T (1993) Die Pflanzengesellschaften Österreichs. Teil 3: Wälder und Gebüsche. Gustav-Fischer, Jena, Stuttgart, New York, p 353

    Google Scholar 

  • Öberg G, Sandén P (2005) Retention of chloride in soil and cycling of organic matter-bound chlorine. Hydrol Process 19:2123–2136 doi:10.1002/hyp.5680

    Article  Google Scholar 

  • Pedersen LB, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. For Ecol Manage 114:55–70

    Article  Google Scholar 

  • Pörtl KC (2005) Microbial nitrogen turnover and greenhouse gas emissions in secondary pure spruce and mixed forests. Dissertation, Univ. f. Bodenkultur, Vienna, p 100

    Google Scholar 

  • Pörtl K, Zechmeister-Boltenstern S, Wanek W, Ambus P, Berger TW (2007) Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94 doi:10.1007/s11104-007-9264-y

    Article  Google Scholar 

  • Ranger J, Turpault M-P (1999) Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For Ecol Manage 122:139–154

    Article  Google Scholar 

  • Rehfuess KE (1990) Waldböden: Entwicklung, Eigenschaften und Nutzung. 2. Aufl. Parey, Hamburg, Berlin, p 294

    Google Scholar 

  • Rennenberg H, Kreutzer K, Papen H, Weber P (1998) Consequences of high nitrogen loads for spruce (picea abies L.) and beech (fagus sylvatica L.) forests. New Phytol 139:71–86 doi:10.1046/j.1469-8137.1998.00181.x

    Article  CAS  Google Scholar 

  • Reuss JO, Johnson DW (1986) Acid Deposition and the Acidification of Soils and Water. Springer Verlag, New York, p 119

    Google Scholar 

  • Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstliche Forschungsberichte Nr. 163, München, p 174

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J Res 31:1855–1870 doi:10.1139/cjfr-31-11-1855

    Article  Google Scholar 

  • Rothe A, Mellert KH (2004) Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Pollut 156:337–335 doi:10.1023/B:WATE.0000036826.17273.b3

    Article  CAS  Google Scholar 

  • Rothe A, Huber C, Kreutzer K, Weis W (2002a) Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45 doi:10.1023/A:1015846906956

    Article  CAS  Google Scholar 

  • Rothe A, Kreutzer K, Küchenhoff K (2002b) Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant Soil 240:47–56 doi:10.1023/A:1015822620431

    Article  CAS  Google Scholar 

  • Rothe A, Ewald J, Hibbs DE (2003) Do admixed broadleaves improve foliar nutrient status of conifer tree crops. For Ecol Manage 172:327–338

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart, p 494

    Google Scholar 

  • Schmid I, Kazda M (2001) Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J Res 31:539–548 doi:10.1139/cjfr-31-3-539

    Article  Google Scholar 

  • Schmid I, Kazda M (2002) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159:37–47 doi:10.1016/S0378-1127(01)00708-3

    Article  Google Scholar 

  • Schume H, Hager H, Jost G (2003) Soil water dynamics and evapotranspiration in a spruce monoculture and a mixed broadleaf-conifer stand. Ekologia (Bratisl) 22:86–101

    Google Scholar 

  • Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol (Amst) 289:258–274 doi:10.1016/j.jhydrol.2003.11.036

    Article  Google Scholar 

  • Sterba H, Blab A, Katzensteiner K (2002) Adapting an individual tree growth model for Norway spruce (Picea abies (L.) Karst.) in pure and mixed species stands. For Ecol Manage 159:101–110

    Article  Google Scholar 

  • Thelin G, Rosengren U, Callesen I, Ingerslev M (2002) The nutrient status of Norway spruce in pure and in mixed-species stands. For Ecol Manage 160:115–125

    Article  Google Scholar 

  • Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollution in forest ecosystems. Reidel, Dordrecht, pp 33–45

    Google Scholar 

  • v. Wilpert K, Zirlewagen D, Kohler M (2000) To what extent can silviculture enhance sustainability of forest sites under the immission regime in central Europe? Water Air Soil Pollut 122:105–120

    Article  Google Scholar 

  • Van der Salm C, De Vries W, Reinds GJ, Dise NN (2007) N leaching across European forest: Derivation and validation of empirical relationships using data from intensive monitoring plots. For Ecol Manage 238:81–91

    Article  Google Scholar 

  • Van Miegroet H, Cole DW, Foster NW (1992) Nitrogen distribution and cycling. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Ecological Series 91. Springer, New York, pp 178–199

    Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Wittich W (1933) Untersuchungen in Nordwestdeutschland über den Einfluss der Holzart auf den biologischen Zustand des Bodens. Mitt Forstwirtsch Forstwiss 4:115–158

    Google Scholar 

  • Zeng GM, Zhang G, Huang GH, Jiang YM, Liu HL (2005) Exchange of Ca2+, Mg2+ and K+ and uptake of H+, NH4 + for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Science 168:259–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Austrian Science Fund (FWF, project numbers P15496 and P18208; both projects granted to T.W. Berger). We thank Anita Gruber, Gerlinde Mistlberger, Karin Wriessnig and Monika Sieghardt for performing the chemical analyses at the laboratory of the Institute of Forest Ecology. We thank Herbert Hager for providing us the equipment for two automatic recording weather stations and for recording stemflow, purchased out of his project funds, and Helmut Schume for teaching us how to use it. We thank Helmut Schume, Georg Jost and Herbet Hager for using their parameter selection for the pure spruce and mixed stand at Kreisbach to run the hydrologic model, already calibrated during the summer 2001. Torsten W. Berger thanks his “academic father” Gene E. Likens for his motivating feedback on the manuscript. Finally, we thank Elisabeth A. Stockdale and two anonymous reviewers for their critical comments for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten W. Berger.

Additional information

Responsible Editor: Elizabeth (Liz) A. Stockdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T.W., Untersteiner, H., Toplitzer, M. et al. Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica) . Plant Soil 322, 317–342 (2009). https://doi.org/10.1007/s11104-009-9918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9918-z

Keywords

Navigation