Plant and Soil

, Volume 322, Issue 1–2, pp 317–342 | Cite as

Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica)

  • Torsten W. Berger
  • Hubert Untersteiner
  • Martin Toplitzer
  • Christian Neubauer
Regular Article


Studies on the combined effects of beech-spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via litterfall, throughfall (+ stemflow) and soil solution were measured in adjacent stands of pure spruce, mixed spruce-beech and pure beech on a nutrient rich site at Kreisbach, as well as in adjacent spruce and mixed stands on a nutrient poor site at Frauschereck to evaluate the impact of tree species composition (spruce versus beech) on these parameters. The highest recorded throughfall (+ stemflow) fluxes were 22.4 kg N ha−1 and 9.6 kg S ha−1 yr−1 and increased from beech over the mixed to the spruce stand at Kreisbach, but were similar for both stands at Frauschereck. At Frauschereck, atmospheric inputs were more or less reflected in element outputs, slightly modified by tree species composition. At Kreisbach, there was hardly any linkage between nutrient inputs and outputs. Our overall conclusion is that tree species composition affects forest nutrition, atmospheric input and consequently soil solution chemistry and input–output budgets of nutrients. However, these effects are site specific and dependent on the studied chemical element and process.


Fagus sylvatica Input–output budget Leaching Nutrient cycling Picea abies 



This research was supported by the Austrian Science Fund (FWF, project numbers P15496 and P18208; both projects granted to T.W. Berger). We thank Anita Gruber, Gerlinde Mistlberger, Karin Wriessnig and Monika Sieghardt for performing the chemical analyses at the laboratory of the Institute of Forest Ecology. We thank Herbert Hager for providing us the equipment for two automatic recording weather stations and for recording stemflow, purchased out of his project funds, and Helmut Schume for teaching us how to use it. We thank Helmut Schume, Georg Jost and Herbet Hager for using their parameter selection for the pure spruce and mixed stand at Kreisbach to run the hydrologic model, already calibrated during the summer 2001. Torsten W. Berger thanks his “academic father” Gene E. Likens for his motivating feedback on the manuscript. Finally, we thank Elisabeth A. Stockdale and two anonymous reviewers for their critical comments for the improvement of this paper.


  1. Alewell C (2001) Predicting reversibility of acidification: the European sulfur story. Water Air Soil Pollut 130:1271–1276 doi: 10.1023/A:1013989419580 CrossRefGoogle Scholar
  2. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Sci 59:233–253 doi: 10.1051/forest:2002020 CrossRefGoogle Scholar
  3. Bastviken D, Thomsen F, Svensson T, Karlsson S, Sandén P, Shaw G, Matucha M, Öberg G (2007) Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim Cosmochim Acta 71:3182–3192 doi: 10.1016/j.gca.2007.04.028 CrossRefGoogle Scholar
  4. Berger TW, Hager H (2000) Physical top soil properties in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manage 136:159–172CrossRefGoogle Scholar
  5. Berger TW, Tartowski SL, Likens GE (1997) Trifluoroacetate retention in a northern hardwood forest soil. Environ Sci Technol 31:1916–1921 doi: 10.1021/es960667e CrossRefGoogle Scholar
  6. Berger TW, Eagar C, Likens GE, Stingeder G (2001) Effects of calcium and aluminum chloride additions on foliar and throughfall chemistry in sugar maples. For Ecol Manage 149:75–90CrossRefGoogle Scholar
  7. Berger TW, Neubauer C, Glatzel G (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manage 159:3–14CrossRefGoogle Scholar
  8. Berger TW, Köllensperger G, Wimmer R (2004) Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant Soil 264:69–83 doi: 10.1023/B:PLSO.0000047714.43253.25 CrossRefGoogle Scholar
  9. Berger TW, Swoboda S, Prohaska T, Glatzel G (2006) The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). For Ecol Manage 229:234–246CrossRefGoogle Scholar
  10. Berger TW, Untersteiner H, Schume H, Jost G (2008) Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand. For Ecol Manage 255:605–618CrossRefGoogle Scholar
  11. Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89–106 doi: 10.1023/A:1005948126251 CrossRefGoogle Scholar
  12. Blum WEH, Danneberg OH, Glatzel G, Grall H, Kilian W, Mutsch F, Stöhr D (1989) Waldbodenuntersuchung-Geländeaufnahme, Probennahme, Analyse-Empfehlungen zur Vereinheitlichung der Vorgangsweise in Österreich. Österreichische Bodenkundliche Gesellschaft, ISBN 3-900 491-02-3, Vienna, p 55Google Scholar
  13. Bücking W, Steinle R (1991) Untersuchungen zum Gesundheitszustand der Bäume und zum Stoffeintrag in naturnahe Waldökosysteme (Bannwälder) Baden-Württembergs. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, p 160Google Scholar
  14. Croise L, Cluzeau C, Ulrich E, Lanier M, Gomez A (1999) RENECOFOR—Interprétation des analyses foliaires réalisées dans les 102 peuplements du réseau de 1993 a 1997 et premières évaluations interdisciplinaires. Ed. Office National des Forêts, Département Recherche et Développement, p 413Google Scholar
  15. De Schrijver A, Nachtergale L, Staelens J, Luyssaert S, De Keersmaeker L (2004) Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut 131:93–105 doi: 10.1016/j.envpol.2004.01.019 PubMedCrossRefGoogle Scholar
  16. De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674 doi: 10.1007/s00442-007-0776-1 PubMedCrossRefGoogle Scholar
  17. De Vries W, Van der Salm C, Reinds GJ, Erisman JW (2007) Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environ Pollut 148:501–513 doi: 10.1016/j.envpol.2006.12.001 PubMedCrossRefGoogle Scholar
  18. Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environ Pollut 102:453–456CrossRefGoogle Scholar
  19. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystemforschung-Ergebnisse des Solling-Projekts 1966–1986. Ulmer, Stuttgart, p 507Google Scholar
  20. Ende H-P (1991) Wirkung von Mineraldünger in Buchen- und Fichtenbeständen des Grundgebirgs-Schwarzwaldes. Freiburger Bodenkundliche Abh 27:98Google Scholar
  21. Federer CA (2004) BROOK 90: A simulation model for evaporation, soil water, and stemflow, Version 4.4e. Computer Freeware and documentation. C. Anthony Federer, Compass Brook, 15 Oyster River Rd., Durham NH 03824. Accessed 18 Sept 2008
  22. Federer CA, Vörösmarty C, Fekete B (2003) Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity. J Hydrometeorol 4:1276–1290 doi: 10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2 CrossRefGoogle Scholar
  23. Finzi AC, Canham CD (1998) Non-additive effects of litter mixtures on net N mineralization in a southern New England forest. For Ecol Manage 105:129–136CrossRefGoogle Scholar
  24. Flückinger W, Braun S (1998) Nitrogen deposition in Swiss forests and ist possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environ Pollut 102(S1):69–76 doi: 10.1016/S0269-7491(98)80017-1 CrossRefGoogle Scholar
  25. Glatzel G, Katzensteiner K, Kazda M, Kühnert M, Markart G, Stöhr D (1988) Deposition langzeitwirksamer Luftschadstoffe in Wäldern und Einfluss auf den Ionenhaushalt. Forschungsbericht 1988, Institut für Forstökologie, Univ. f. Bodenkultur, Vienna, p 47Google Scholar
  26. Gundersen P, Callesen I, De Vries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407 doi: 10.1016/S0269-7491(98)80060-2 CrossRefGoogle Scholar
  27. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14:1–57 doi: 10.1139/a05-015 CrossRefGoogle Scholar
  28. Hanchi A, Rapp M (1997) Stemflow determination in forest stands. For Ecol Manage 97:231–235CrossRefGoogle Scholar
  29. Heitz R (1998) Umbau von Fichtenreinbeständen in naturnahe Mischwälder-Auswirkungen auf bodenchemischen Zustand und Bioelementhaushalt. Dissertation, Ludwig-Maximilians-Univ., München, p 307Google Scholar
  30. Hüttl RF 1986 Forest Fertilization: Results from Germany, France and the Nordic Countries. The Fertiliser Society, Proceedings No. 250, Purley Press Ltd. p 40Google Scholar
  31. Jost G, Schume H, Hager H (2004) Factors controlling soil water-recharge in a mixed European beech (Fagus sylvatica L.)—Norway spruce [Picea abies (L.) Karst.] stand. Eur J For Res 123:93–104Google Scholar
  32. Kopp U (2000) Vergleich von direkten und indirekten Methoden zur Bestimmung des Blattflächenindex bei Fichten und Buchen. Untersuchung des Kronenaufbaus bei Fichten. Diploma Thesis, Univ. f. Bodenkultur, Vienna, p 82Google Scholar
  33. Kreutzer K, Deschu E, Hösl G (1986) Vergleichende Untersuchungen über den Einfluß von Fichte (Picea abies [L.] Karst.) und Buche (Fagus sylvatica L.) auf die Sickerwasserqualität. Forstw Cbl 105:364–371 doi: 10.1007/BF02741744 CrossRefGoogle Scholar
  34. Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004) Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems (N Y, Print) 7:180–192 doi: 10.1007/s10021-003-0216-y CrossRefGoogle Scholar
  35. Likens GE, Driscoll CD, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41:89–173 doi: 10.1023/A:1005984620681 CrossRefGoogle Scholar
  36. Likens GE, Driscoll CT, Buso DC, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–316 doi: 10.1023/A:1020972100496 CrossRefGoogle Scholar
  37. Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027 doi: 10.2307/2405064 CrossRefGoogle Scholar
  38. Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA. Biogeochemistry 72:191–232 doi: 10.1007/s10533-004-0357-x CrossRefGoogle Scholar
  39. MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Change Biol 8:1028–1033 doi: 10.1046/j.1365-2486.2002.00532.x CrossRefGoogle Scholar
  40. Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego, p 889Google Scholar
  41. Martinson L, Lamersdorf N, Warfvinge P (2005) The Solling roof revisited—slow recovery from acidification observed and modeled despite a decade of “clean-rain” treatment. Environ Pollut 135:293–302 doi: 10.1016/j.envpol.2004.09.022 PubMedCrossRefGoogle Scholar
  42. Matzner E (1988) Der Stoffumsatz zweier Waldökosysteme im Solling. Berichte des Forschungszentrums Waldökosysteme/Waldsterben. Reihe A 40:217Google Scholar
  43. McLaughlin SB, Wimmer R (1999) Tansley review no. 104—Calcium physiology and its role in terrestrial ecosystem processes. New Phytol 142:373–417 doi: 10.1046/j.1469-8137.1999.00420.x CrossRefGoogle Scholar
  44. Mucina L, Grabherr G, Ellmauer T (1993) Die Pflanzengesellschaften Österreichs. Teil 3: Wälder und Gebüsche. Gustav-Fischer, Jena, Stuttgart, New York, p 353Google Scholar
  45. Öberg G, Sandén P (2005) Retention of chloride in soil and cycling of organic matter-bound chlorine. Hydrol Process 19:2123–2136 doi: 10.1002/hyp.5680 CrossRefGoogle Scholar
  46. Pedersen LB, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. For Ecol Manage 114:55–70CrossRefGoogle Scholar
  47. Pörtl KC (2005) Microbial nitrogen turnover and greenhouse gas emissions in secondary pure spruce and mixed forests. Dissertation, Univ. f. Bodenkultur, Vienna, p 100Google Scholar
  48. Pörtl K, Zechmeister-Boltenstern S, Wanek W, Ambus P, Berger TW (2007) Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94 doi: 10.1007/s11104-007-9264-y CrossRefGoogle Scholar
  49. Ranger J, Turpault M-P (1999) Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For Ecol Manage 122:139–154CrossRefGoogle Scholar
  50. Rehfuess KE (1990) Waldböden: Entwicklung, Eigenschaften und Nutzung. 2. Aufl. Parey, Hamburg, Berlin, p 294Google Scholar
  51. Rennenberg H, Kreutzer K, Papen H, Weber P (1998) Consequences of high nitrogen loads for spruce (picea abies L.) and beech (fagus sylvatica L.) forests. New Phytol 139:71–86 doi: 10.1046/j.1469-8137.1998.00181.x CrossRefGoogle Scholar
  52. Reuss JO, Johnson DW (1986) Acid Deposition and the Acidification of Soils and Water. Springer Verlag, New York, p 119Google Scholar
  53. Rothe A (1997) Einfluß des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstliche Forschungsberichte Nr. 163, München, p 174Google Scholar
  54. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J Res 31:1855–1870 doi: 10.1139/cjfr-31-11-1855 CrossRefGoogle Scholar
  55. Rothe A, Mellert KH (2004) Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Pollut 156:337–335 doi: 10.1023/B:WATE.0000036826.17273.b3 CrossRefGoogle Scholar
  56. Rothe A, Huber C, Kreutzer K, Weis W (2002a) Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45 doi: 10.1023/A:1015846906956 CrossRefGoogle Scholar
  57. Rothe A, Kreutzer K, Küchenhoff K (2002b) Influence of tree species composition on soil and soil solution properties in two mixed spruce-beech stands with contrasting history in Southern Germany. Plant Soil 240:47–56 doi: 10.1023/A:1015822620431 CrossRefGoogle Scholar
  58. Rothe A, Ewald J, Hibbs DE (2003) Do admixed broadleaves improve foliar nutrient status of conifer tree crops. For Ecol Manage 172:327–338CrossRefGoogle Scholar
  59. Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart, p 494Google Scholar
  60. Schmid I, Kazda M (2001) Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J Res 31:539–548 doi: 10.1139/cjfr-31-3-539 CrossRefGoogle Scholar
  61. Schmid I, Kazda M (2002) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159:37–47 doi: 10.1016/S0378-1127(01)00708-3 CrossRefGoogle Scholar
  62. Schume H, Hager H, Jost G (2003) Soil water dynamics and evapotranspiration in a spruce monoculture and a mixed broadleaf-conifer stand. Ekologia (Bratisl) 22:86–101Google Scholar
  63. Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol (Amst) 289:258–274 doi: 10.1016/j.jhydrol.2003.11.036 CrossRefGoogle Scholar
  64. Sterba H, Blab A, Katzensteiner K (2002) Adapting an individual tree growth model for Norway spruce (Picea abies (L.) Karst.) in pure and mixed species stands. For Ecol Manage 159:101–110CrossRefGoogle Scholar
  65. Thelin G, Rosengren U, Callesen I, Ingerslev M (2002) The nutrient status of Norway spruce in pure and in mixed-species stands. For Ecol Manage 160:115–125CrossRefGoogle Scholar
  66. Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollution in forest ecosystems. Reidel, Dordrecht, pp 33–45Google Scholar
  67. v. Wilpert K, Zirlewagen D, Kohler M (2000) To what extent can silviculture enhance sustainability of forest sites under the immission regime in central Europe? Water Air Soil Pollut 122:105–120CrossRefGoogle Scholar
  68. Van der Salm C, De Vries W, Reinds GJ, Dise NN (2007) N leaching across European forest: Derivation and validation of empirical relationships using data from intensive monitoring plots. For Ecol Manage 238:81–91CrossRefGoogle Scholar
  69. Van Miegroet H, Cole DW, Foster NW (1992) Nitrogen distribution and cycling. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Ecological Series 91. Springer, New York, pp 178–199Google Scholar
  70. Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48CrossRefGoogle Scholar
  71. Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258CrossRefGoogle Scholar
  72. Wittich W (1933) Untersuchungen in Nordwestdeutschland über den Einfluss der Holzart auf den biologischen Zustand des Bodens. Mitt Forstwirtsch Forstwiss 4:115–158Google Scholar
  73. Zeng GM, Zhang G, Huang GH, Jiang YM, Liu HL (2005) Exchange of Ca2+, Mg2+ and K+ and uptake of H+, NH4 + for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China. Plant Science 168:259–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Torsten W. Berger
    • 1
  • Hubert Untersteiner
    • 1
  • Martin Toplitzer
    • 1
  • Christian Neubauer
    • 1
  1. 1.Department of Forest- and Soil Sciences, Institute of Forest EcologyUniv. f. BodenkulturViennaAustria

Personalised recommendations