Skip to main content
Log in

Spatial variability of soil properties under Pinus canariensis canopy in two contrasting soil textures

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Knowledge of the spatial pattern and scale of plant resources is important to aid in understanding the causes of this spatial pattern and their consequences on process at the population, community, and ecosystem levels. We tested whether the effect of individual plants on the soil properties beneath their canopies might be mediated by soil texture, since this soil property has great influence on the soil organic matter protection, the soil cation exchange capacity, and the nutrients diffusion rate. We hypothesize that variables directly related to organic matter (microbial biomass-N [MB-N] or dissolved organic-N [DON]), as well as soil nutrients interacting with soil secondary minerals (PO4-P and NH4-N), should more closely follow the plant canopy projection in sandy soils than loamy ones. We also expected a higher spatial range and dependence of NO3-N in sandy soils, although the spatial distribution should not necessarily be affected by the plant position. To test these hypotheses, we used square plots (8 m × 8 m or 6 m × 6 m) placed around isolated mature individuals of Pinus canariensis in both loamy and sandy soils in P. canariensis forests, with replicates in summer and winter. Spatial pattern and scale of MB-N, DON, and inorganic-N and -P were analyzed with geostatistical methods. In the summer sampling, all soil variables had lower spatial ranges in the loamy soil than the sandy soil. However, no clear trend was observed in the winter. The spatial dependence of NO3-N from the two sampling dates was higher for the sandy soil than the loamy soil. Kriged maps in the sandy soil revealed that the spatial distributions of the summer soil moisture, MB-N, DON, and PO4-P were all dependent on pine location. Our results suggested that the presence of P. canariensis individuals may be an important source of spatial heterogeneity in these forests. Soil texture may determine the magnitude of the pine canopy’s effect on the spatial distribution of chemical and biological soil properties when water content is scant, but it may have negligible effects under conditions of higher water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonovics J, Clay K, Schmitt J (1987) The measurement of small-scale environmental heterogeneity using clonal transplants of Anthoxanthum odoratum and Danthonia spicata. Oecologia 71:601–607 doi:10.1007/BF00379305

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc [Ser A] 26:211–243

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen; a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842 doi:10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Cabrera ML, Beare MH (1993) Alkaline persulphate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    CAS  Google Scholar 

  • Cain ML, Subler S, Evans JP, Fortin MJ (1999) Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118:397–404 doi:10.1007/s004420050741

    Article  Google Scholar 

  • Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196 doi:10.1023/B:VEGE.0000029374.64778.68

    Article  Google Scholar 

  • Covelo F, Rodríguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant Soil 311:109–119 doi:10.1007/s11104-008-9662-9

    Article  CAS  Google Scholar 

  • D’Elia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764

    Google Scholar 

  • Doyle A, Weintraub MN, Schimel JP (2004) Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68:669–676

    Article  CAS  Google Scholar 

  • Dupuis EM, Whalen JK (2007) Soil properties related to the spatial pattern of microbial biomass and respiration in agroecosystems. Can J Soil Sci 87:479–484

    CAS  Google Scholar 

  • Durán J, Rodríguez A, Fernández-Palacios JM, Gallardo A (2008) Changes in soil N and P availability in a Pinus canariensis fire chronosequence. For Ecol Manage 256:384–387

    Article  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183 doi:10.1016/S0169-5347(02)02496-5

    Article  Google Scholar 

  • FAO (1996) Digital soil map of the world and derived soil properties. Derived from the FAO/UNESCO soil map of the world. FAO, Rome

    Google Scholar 

  • Filella I, Peñuelas J (2003) Indications of hydraulic lift by Pinus halepensis and its effects on the water relations of neighbour shrubs. Biol Plant 47:209–214 doi:10.1023/B:BIOP.0000022253.08474.fd

    Article  Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley, New York

    Google Scholar 

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia (Jena) 47:117–125 doi:10.1078/0031-4056-00175

    Article  CAS  Google Scholar 

  • Gallardo A, Paramá R (2007) Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139:199–208 doi:10.1016/j.geoderma.2007.01.022

    Article  CAS  Google Scholar 

  • Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82 doi:10.1023/A:1004725927358

    Article  CAS  Google Scholar 

  • Gallardo A, Paramá R, Covelo F (2006) Differences between soil ammonium and nitrate spatial pattern in six plant communities. Simulated effect on plant populations. Plant Soil 279:333–346 doi:10.1007/s11104-005-8552-7

    Article  CAS  Google Scholar 

  • Génova MM, Santana C, Martín E (1999) Longevidad y anillos de crecimiento en el Pino de la Virgen (El Paso, la Palma). Vegueta 4:27–32

    Google Scholar 

  • Gross KL, Pregitzer KS, Burton AJ (1995) Spatial variation in nitrogen availability in three successional plant communities. J Ecol 83:357–367 doi:10.2307/2261590

    Article  Google Scholar 

  • Guo D, Mou P, Jones RH, Mitchel RJ (2002) Temporal changes in spatial patterns of soil moisture following disturbance: an experimental approach. J Ecol 90:338–347 doi:10.1046/j.1365-2745.2001.00667.x

    Article  Google Scholar 

  • Hossain AKMA, Khanna PK, Field JB (1993) Acid-peroxide digestion procedure for determining total nitrogen in chloroform-fumigated and non-fumigated soil extracts. Soil Biol Biochem 25:967–969 doi:10.1016/0038-0717(93)90100-P

    Article  CAS  Google Scholar 

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692 doi:10.2307/2261666

    Article  Google Scholar 

  • James SE, Pärtel M, Wilson SD, Peltzer DA (2003) Temporal heterogeneity of soil moisture in grassland and forest. J Ecol 91:234–239

    Article  Google Scholar 

  • Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEN value. Soil Biol Biochem 28:33–37 doi:10.1016/0038-0717(95)00101-8

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999 doi:10.1016/j.soilbio.2005.08.012

    Article  CAS  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423 doi:10.1016/j.soilbio.2004.08.008

    Article  CAS  Google Scholar 

  • Kwon GJ, Lee BA, Nam JM, Kim JG (2007) The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea: II. Soil environments. Ecol Res 22:75–86 doi:10.1007/s11284-006-0188-4

    CAS  Google Scholar 

  • Lechowicz MJ, Bell G (1991) The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J Ecol 79:687–696 doi:10.2307/2260661

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138 doi:10.1007/BF00048036

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996). Total carbon, organic carbon and organic matter. In: Soil science society of america and america society of agronomy (eds) Methods of soils analysis. Part 3. Chemical methods. SSAA Books Series n° 5. Madison, USA, pp 961–1009

  • Pebesma EJ, Wesseling CG (1998) Gstat: a program for geostatistical modelling, prediction and simulation. Comput Geosci 24:17–31 doi:10.1016/S0098-3004(97)00082-4

    Article  Google Scholar 

  • Quilchano C, Marañón T, Pérez-Ramos IM, Noejovich L, Valladares F, Zavala MA (2008) Patterns and ecological consequences of abiotic heterogeneity in managed cork oak forests of Southern Spain. Ecol Res 23:127–139 doi:10.1007/s11284-007-0343-6

    Article  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribeiro PJ Jr, Diggle PJ (2001) geoR: a package for geostatistical analysis. R-NEWS 1:15–18

    Google Scholar 

  • Robertson GP (1987) Geostatistics in ecology: interpolating with known variance. Ecology 68:744–748 doi:10.2307/1938482

    Article  Google Scholar 

  • Robertson GP (1988) Spatial variability in a succesional plant community: patterns of nitrogen availability. Ecology 69:1517–1524 doi:10.2307/1941649

    Article  Google Scholar 

  • Robertson GP, Gross CL (1994) Assessing the heterogeneity of belowground resources: quantifying pattern and scale. In: Caldwell MM, Pearcy RW (eds) Plant exploitation of environmental heterogeneity. Academic, New York, pp 237–253

    Google Scholar 

  • Robertson GP, Crum JR, Ellis BG (1993) The spatial variability of soil resources following long-term disturbance. Oecologia 96:451–456 doi:10.1007/BF00320501

    Article  Google Scholar 

  • Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil resources, microbial activity and primary production across an agricultural ecosystem. Ecol Appl 7:158–170 doi:10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2

    Article  Google Scholar 

  • Rodríguez A, Durán J, Gallardo A (2007) Influence of legumes on N cycling in a heathland in northwest Spain. Web Ecol 7:87–93

    Google Scholar 

  • Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A (2008) Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. For Ecol Manage. doi:10.1016/j.foreco.2008.10.006

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modelling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314 doi:10.2307/2937096

    Article  Google Scholar 

  • Ryel RJ, Caldwell MM (1998) Nutrient acquisition from soils with patchy nutrient distributions as assessed with simulation models. Ecology 79:2735–2744

    Article  Google Scholar 

  • Ryel RJ, Caldwell MM, Manwaring JH (1996) Temporal dynamics of soil spatial heterogeneity in sagebrush-wheatgrass steppe during a growing season. Plant Soil 184:299–309 doi:10.1007/BF00010459

    Article  CAS  Google Scholar 

  • Saetre P (1999) Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 22:183–192 doi:10.1111/j.1600-0587.1999.tb00467.x

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego, California

    Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048 doi:10.1126/science.247.4946.1043

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374 doi:10.2307/2265615

    Article  Google Scholar 

  • Schutter ME, Sandeno JM, Dick RP (2001) Seasonal, soil type and alternative management influences on microbial communities of vegetable cropping systems. Biol Fertil Soils 34:397–410 doi:10.1007/s00374-001-0423-7

    Article  CAS  Google Scholar 

  • Sims GK, Ellsworth TR, Mulvaney RL (1995) Microscale determination of inorganic nitrogen in water and soil extracts. Commun Soil Sci Plann 26:303–316 doi:10.1080/00103629509369298

    Article  CAS  Google Scholar 

  • Smeck NE (1985) Phosphorus dynamics in soils and landscape. Geoderma 36:185–199 doi:10.1016/0016-7061(85)90001-1

    Article  CAS  Google Scholar 

  • Tausz M, Trummer W, Wonisch A, Goessler W, Grill D, Jimenez MS, Morales D (2004) A survey of foliar mineral nutrient concentrations of Pinus canariensis at field plots in Tenerife. For Ecol Manage 189:49–55

    Article  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Wang L, Mou PP, Huang J, Wang J (2007) Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant Soil 295:137–150 doi:10.1007/s11104-007-9271-z

    Article  CAS  Google Scholar 

  • Wattel-Koekkoek EJW, van Genuchten PPL, Buurman P, van Lagen B (2001) Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soil. Geoderma 99:27–49 doi:10.1016/S0016-7061(00)00062-8

    Article  CAS  Google Scholar 

  • Zinke PJ (1962) The patterns of influence of individual forest trees on soil properties. Ecology 43:130–133 doi:10.2307/1932049

    Article  Google Scholar 

  • Zhou Z, Sun OJ, Luo Z, Jin H, Chen Q, Han X (2008) Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant Soil 310:103–112 doi:10.1007/s11104-008-9633-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Rocío Paramá, Rosana Estévez, Javier Méndez, and Gustavo Morales, who helped in soil sampling and chemical analyses. Special thanks are due to Felisa Covelo and Jesus Rodríguez for their unconditional help. Local government authorities (Cabildo Insular de La Palma) provided us with lodging, four-wheel drive vehicles, and other facilities to carry out research on the island; we especially thank Félix Medina for this help. This study was financed by the Ministerio Español de Ciencia y Tecnología of the Spanish government, and grants REN2003-08620-C02-01 and CGL2006-13665-C02-01. Alexandra Rodríguez was funded by a graduate student fellowship from the Galician (NW Spain) government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez.

Additional information

Responsible Editor: Angela Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, A., Durán, J., Fernández-Palacios, J.M. et al. Spatial variability of soil properties under Pinus canariensis canopy in two contrasting soil textures. Plant Soil 322, 139–150 (2009). https://doi.org/10.1007/s11104-009-9901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9901-8

Keywords

Navigation