Plant and Soil

, Volume 331, Issue 1–2, pp 203–215 | Cite as

Emissions of carbon dioxide, methane and nitrous oxide from soil receiving urban wastewater for maize (Zea mays L.) cultivation

  • Fabián Fernández-Luqueño
  • Verónica Reyes-Varela
  • Fernando Cervantes-Santiago
  • Concepción Gómez-Juárez
  • Amalia Santillán-Arias
  • Luc Dendooven
Regular Article


We investigated how amending maize with wastewater at 120 kg N ha−1 affected crop growth, soil characteristics and emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) compared to plants fertilized with urea. Maize growth response was similar when fertilized with urea or wastewater despite a delayed release of nutrients upon mineralization of the organic material in the wastewater. Applying wastewater to soil significantly increased the mean CO2 emission rate 2.4 times to 1.74 µg C kg−1 soil h−1 compared to the unamended soil (0.74 µg C kg−1 soil h−1), and cultivating maize further increased it 3.2 times (5.61 µg C kg−1 soil h−1). Irrigating soil with wastewater, cultivating it with maize or applying urea had no significant effect on the emission of N2O compared to the unamended soil (1.49 × 10−3 µg N kg−1 soil h−1). Adding urea to soil did no affect the CH4 oxidation rate (0.1 × 10−3 µg C kg−1 soil h−1), nor did cultivating maize in the urea-amended soil, but adding wastewater to soil resulted in a significant production of CH4 (128.4 × 10−3 µg C kg−1 soil h−1). Irrigating soil with wastewater increased the global warming potential (GWP) 2.5 fold compared to the urea amended soil, while in soil cultivated with maize GWP increased 1.4 times. It was found that irrigating crops with wastewater might limit the use of N fertilizer and water from aquifers, but the amount applied should be limited because nitrate (NO 3 ) leaching and emissions of CO2, N2O and CH4 will be substantial and the increased soil salt content will limit crop growth.


Wastewater irrigation Global warming potential Plant development Soil characteristics Inorganic N in soil Valley of the Mezquital 



Global warming potential


Greenhouse gases


Polyvinyl chloride



We thank Juan Manuel Ceballos-Ramírez for technical assistance and to “Sistema de Aguas de la Ciudad de México” for wastewater supply. The work was funded by Fondo Sectorial de Sagarpa-Conacyt (CLAVE: SAGARPA-2003-C01-5), Fondos Mixtos Conacyt Gobierno del Estado de Mexico project EDOMEX-2005-c01-19, and Semarnat project Semarnat-2002-C01-0054 (México). F. F-L received grant-aided support from CONACyT. V. R.-V. and F. C.-S. received grant-aided support from ‘Sistema Nacional de Investigadores (SNI)’ México.


  1. Assadian MN, Di Giovanni GD, Enciso J, Iglesias J, Lindemann W (2005) The transport of waterborne solutes and bacteriophaged with a wastewater blend. Agric Ecosyst Environ 111:279–291. doi: 10.1016/j.agee.2005.05.010 CrossRefGoogle Scholar
  2. Aulakh MS, Rennie DA, Paul EA (1984) Gaseous nitrogen losses from soil under zero-till as compared with conventional-till management systems. J Environ Qual 13:130–136Google Scholar
  3. Azam F, Muller C, Weiske A, Nenckiser G, Ottow JCG (2002) Nitrification and denitrification as sources of atmodpheric nitrous oxide—role of oxidizable carbon and applied nitrogen. Biol Fertil Soils 35:54–61. doi: 10.1007/s00374-001-0437-1 CrossRefGoogle Scholar
  4. Beck-Friis B, Pell M, Sonesson U, Jonsson H, Kirchmann H (2000) Formation and emission of N2O and CH4 from compost heaps of organic household waster. Environ Monit Assess 62:317–331. doi: 10.1023/A:1006245227491 CrossRefGoogle Scholar
  5. Bellini G, Sumner ME, Radcliffe DE, Qafoku NP (1996) Anion transport trough columns of highly weathered acid soil: adsorption and retardation. Soil Sci Soc Am J 60:132–137Google Scholar
  6. Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25:178–183CrossRefGoogle Scholar
  7. Brady NC, Weil RR (1999) The nature and properties of soils, 12th edn. Prentice Hall, USAGoogle Scholar
  8. Bremner JM (1996) Total nitrogen. In: Sparks DL (ed) Methods of soil analysis: chemical methods Part 3. Soil Science Society of America, American Society of Agronomy, Madison, pp 1085–1122Google Scholar
  9. Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilisers, nitrification inhibitors, and urease inhibitors. Biol Fert Soils 17:263–268CrossRefGoogle Scholar
  10. Castro-Silva C, Guido ML, Ceballos JM, Marsch R, Dendooven L (2008) Production of carbon dioxide and nitrous oxide in alkaline saline soil of Texcoco at different water contents amended with urea: a laboratory study. Soil Biol Biochem 40:1813–1822. doi: 10.1016/j.soilbio.2008.03.004 CrossRefGoogle Scholar
  11. Chan ASK, Parkin TB (2001) Effect of land use on methane flux from soil. J Environ Qual 30:786–797PubMedCrossRefGoogle Scholar
  12. Chu HY, Hosen Y, Yagi K (2007) NO, N2O, CH4 and fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol Biochem 39:330–339. doi: 10.1016/j.soilbio.2006.08.003 CrossRefGoogle Scholar
  13. Cordovil CMDS, Cabral F, Coutinho J (2007) Potential mineralization of nitrogen from organic wastes to ryegrass and wheat crops. Bioresource Technol 98:3265–3268. doi: 10.1016/j.biortech.2006.07.014 CrossRefGoogle Scholar
  14. Di Paolo E, Rinaldi M (2008) Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crop Res 105:202–210. doi: 10.1016/j.fcr.2007.10.004 CrossRefGoogle Scholar
  15. Downs TJ, Cifuentes E, Ruth E, Suffet I (2000) Effectiveness of natural treatment in a wastewater irrigation district of the Mexico City region: a synoptic field survey. Water Environ Res 72:4–21CrossRefGoogle Scholar
  16. Drury CF, Oloya TO, McKenney DJ (1998) Long-term effects of fertilization and rotation on denitrification and soil carbon. Soil Sci Soc Am J 62:1572–1579CrossRefGoogle Scholar
  17. Du ZY, Zhou JM, Wang HY, Du CW, Chen XQ (2005) Effect of nitrogen fertilizers on movement and transformation of phosphorus in an acid soil. Pedosphere 15:424–431Google Scholar
  18. Eicher MJ (1990) Nitrous oxide emissions from fertilized soils: summary of available data. Environ Qual 19:272–280CrossRefGoogle Scholar
  19. Ellert BH, Jansen HH (2008) Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can J Soil Sci 88:207–217Google Scholar
  20. Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenstrom J, Hallin S (2007) Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol Biochem 39:106–115. doi: 10.1016/j.soilbio.2006.06.015 CrossRefGoogle Scholar
  21. Estiu G, Merz KM (2007) Competitive hydrolytic and eliminations mechanisms in the urease catalyzed decomposition of urea. J Phys Chem B 111:10263–10274. doi: 10.1021/jp072323o CrossRefPubMedGoogle Scholar
  22. Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, Part 1. Physical and mineralogical methods, 2nd edn. Soil Science Society of America, American Society of Agronomy, Madison, pp 383–411Google Scholar
  23. Giles J (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791. doi: 10.1038/433791a CrossRefPubMedGoogle Scholar
  24. Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA (2005) Greenhouse gas contributions of agriculture soils and potential mitigation practices in Eastern Canada. Soil Till Res 83:53–72. doi: 10.1016/j.still.2005.02.020 CrossRefGoogle Scholar
  25. Hamilton AJ, Stagnitti F, Xiong XZ, Kreidl SL, Benke KK, Maher P (2007) Wastewater irrigation: the state of play. Vadose Zone J 6:823–840. doi: 10.2136/vzj2007.0026 CrossRefGoogle Scholar
  26. Harrison R, Webb J (2001) A review of the effect of N fertilizer type on gaseous emissions. Adv Agron 73:65–108CrossRefGoogle Scholar
  27. Heidarpour M, Mostafazadeh-Fard B, Koupai JA, Malekian R (2007) The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods. Agr Water Manage 90:87–94. doi: 10.1016/j.agwat.2007.02.009 CrossRefGoogle Scholar
  28. IPCC (Intergovernmental Panel on Climate Change) (2007) Intergovernmental Panel on Climate Change WGI, Fourth Assessment Report, Climate Change 2007: The Physical Science Basis. Summary for Policymakers. IPCC Secretariat, c/o WMO, 7bis, Avenue de la Paix, C.P.N. 2300, 1211 Geneva 2, Switzerland. 2007. Available from:
  29. Jimenez B, Chávez A (2004) Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley” case. Water Sci Technol 50:269–276PubMedGoogle Scholar
  30. Jiménez CB, Landa VH (1998) Physico-chemical and bacteriological characterization of wastewater from Mexico City. Water Sci Technol 37:1–8Google Scholar
  31. Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007) Agricultural opportunities to mitigate greenhouse gas emissions. Environ Pollut 150:107–124. doi: 10.1016/j.envpol.2007.06.030 CrossRefPubMedGoogle Scholar
  32. Khalil MI, Inubushi K (2007) Possibilities to reduce rice straw-induced global warming potential of a sandy paddy soil by combining hydrological manipulations and urea-N fertilizations. Soil Biol Biochem 39:2675–2681. doi: 10.1016/j.soilbio.2007.05.003 CrossRefGoogle Scholar
  33. Kravchenko I, Boeckx P, Galchenko V, Van Cleemput O (2002) Short- and medium-term effects of NH4+ on CH4 and N2O fluxes in arable soils with a different texture. Soil Biol Biochem 34:669–678. doi: 10.1016/S0038-0717(01)00232-2 CrossRefGoogle Scholar
  34. Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Till Res 83:25–52. doi: 10.1016/j.still.2005.02.008 CrossRefGoogle Scholar
  35. Mackenzie F (1998) Our changing planet. An introduction to earth system science and global environmental change, 2nd edn. Prentice Hall, New JerseyGoogle Scholar
  36. McLain JET, Martens DA (2006) Moisture controls on trace gas fluxes in semiarid riparian soil. Soil Sci Soc Am J 70:367–377. doi: 10.2136/sssaj2005.0105 CrossRefGoogle Scholar
  37. Meijide A, Diez JA, Sanchez-Martin L, Lopez-Fernandez L, Vallejo A (2007) Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric Ecosys Environ 121:383–394. doi: 10.1016/j.agee.2006.11.020 CrossRefGoogle Scholar
  38. Menendez S, Lopez-Bellido RJ, Benitez-Vega J, Gonzalez-Murua C, Lopez-Bellido L, Estavillo JM (2008) Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. Eur J Agron 28:559–569. doi: 10.1016/j.eja.2007.12.005 CrossRefGoogle Scholar
  39. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1998) Assessing and mitigating N2O emissions from agricultural soils. Climatic Change 40:7–38CrossRefGoogle Scholar
  40. Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soils analysis chemical methods Part 3. Soil Science Society of America, American Society of Agronomy, Madison, pp 1123–1184Google Scholar
  41. Neeteson JJ, Carton OT (2001) The environmental impact of nitrogen in field vegetable production. Acta Hort 563:21–28Google Scholar
  42. Peasey A, Blumenthal U, Mara D, Ruiz-Palacios G (2000) A review of policy and Standard for wastewater reuse in agriculture: a Latin American Perspective. WELL Study, Task No. 68 Part 11Google Scholar
  43. Ramírez-Fuentes E, Lucho-Constantin C, Escamilla-Silva E, Dendooven L (2002) Characteristics, and carbon and Nitrogen dynamics in soil irrigated with wastewater for different lengths of time. Bioresource Technol 85:179–187. doi: 10.1016/S0960-8524(02)00035-4 CrossRefGoogle Scholar
  44. Rhoades JD, Mantghi NA, Shause PJ, Alves W (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53:428–433CrossRefGoogle Scholar
  45. Rosso D, Stenstrom KM (2008) The carbon-sequestration potential of municipal wastewater treatment. Chemosphere 70:1468–1475. doi: 10.1016/j.chemosphere.2007.08.057 CrossRefPubMedGoogle Scholar
  46. Rutkowski T, Raschid-Sally L, Buechler S (2007) Wastewater irrigation in the developing world-two case studies from the Kathmandu valley in Nepal. Agr Water Manage 88:83–91. doi: 10.1016/j.agwat.2006.08.012 CrossRefGoogle Scholar
  47. SAS Institute (1989) Statistic guide for personal computers. Version 6.04, Edn. SAS Institute, CaryGoogle Scholar
  48. Scott CA, Farqui NI, Raschidsally L (2004) Wastewater use in irrigated agriculture: management challenges in developing countries. In: Scott CA, Farqui NI, RaschidSally L (eds) Wastewater use in irrigated agriculture: confronting the livelihood and environmental realities. CAB International, India, pp 1–10CrossRefGoogle Scholar
  49. Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci 25:303–335. doi: 10.1080/07352680600794232 CrossRefGoogle Scholar
  50. Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis: chemical methods Part 3. Soil Science Society of America, American Society of Agronomy, Madison, pp 475–490Google Scholar
  51. Velázquez-Machuca MA, Ortega-Escobar M, Martínez-Garza A, Kohashi-Shibata J, García-Calderón N (2002) Functional Relationship ESP-SAR in wastewater and soils of the Mezquital Valley, Hidalgo, México. Terra 20:459–464Google Scholar
  52. Wang ZH, Li SX, Malhi S (2008) Effects of fertilization and other agronomic measures on nutritional quality of crops. J Sci Food Agr 88:7–23. doi: 10.1002/jsfa.3084 CrossRefGoogle Scholar
  53. Yevdokimov I, Ruser R, Buegger F, Marx M, Munch JC (2006) Microbial immobilisation of 13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats. Soil Biol Biochem 38:1202–1211. doi: 10.1016/j.soilbio.2005.10.004 CrossRefGoogle Scholar
  54. Yue J, Shi Y, Liang W, Wu J, Wang CR, Huang GH (2005) Methane and nitrous oxide emissions from rice field and related microorganism in black soil northeastern China. Nutr Cycl Agroecosys 73:293–301. doi: 10.1007/s10705-005-3815-5 CrossRefGoogle Scholar
  55. Zou JW, Huang Y, Zheng XH, Wang YS (2007) Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: dependence on water regime. Atmos Environ 41:8030–8042. doi: 10.1016/j.atmosenv.2007.06.049 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fabián Fernández-Luqueño
    • 1
    • 2
  • Verónica Reyes-Varela
    • 1
  • Fernando Cervantes-Santiago
    • 1
  • Concepción Gómez-Juárez
    • 2
  • Amalia Santillán-Arias
    • 3
  • Luc Dendooven
    • 1
  1. 1.Laboratory of Soil Ecology, Department of Biotechnology and BioengineeringCinvestavMéxico D.FMexico
  2. 2.Technological University of TulancingoHidalgoMexico
  3. 3.Technological University of Tula-TepejiHidalgoMexico

Personalised recommendations