Plant and Soil

, Volume 330, Issue 1–2, pp 447–464 | Cite as

Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina)

  • Aranzazú Guevara
  • Carla Valeria Giordano
  • Julieta Aranibar
  • Marcelo Quiroga
  • Pablo E. Villagra
Regular Article


Prosopis flexuosa trees in the Monte Desert grow in dune and inter-dune valleys, where the water table is located at 6–14 m depth. We asked whether trees in the dunes, which are less likely to access the water table, present a coarse surface root architecture that might favor the exploration / exploitation of dune resources, compensating for water table inaccessibility. We characterized the architecture of surface roots of valley and dune trees, together with the soil environment. The dune held 50 % less and deeper gravimetric soil water (along a 4 m profile), 3-times less organic matter, 2-times less available phosphorous, and a sharper contrast of ammonium and nitrate concentration between plant canopies and uncovered soil than the valley. Coarse surface roots of dune trees were highly branched and grew tortuously at 0.56 ± 0.16 m depth before sinking downward near the tree crown, suggesting an intensive exploitation of the ephemeral, deep, and canopy-linked resources. In contrast, trees from the valley spread their profuse and less branched surface roots mainly horizontally at 0.26 ± 0.08 m depth, several meters outside the crown probably exploring this resource-rich site. A model for the environmental control of root architecture together with potential ecological effects is discussed.


Water table Root architecture Root topology Dunes Nutrient patches 



We thank the Dirección de Recursos Naturales Renovables of Mendoza province for their permission to work in Telteca Natural Reserve, and park ranger Silvana Piccone for her logistic assistance and hospitality. We are grateful to Hugo Debandi, Carmen Sartor, Diego Odales, and Gualberto Zalazar for their collaboration with field work; to Víctor Hugo Videla and Rafael Bottero for their technical and creative support; to Ana Srur, María Alejandra Giantomassi and Alberto Rippalta for their help with dendrochronological analysis; to Esteban Jobbágy for his unconditional support. We are particularly thankful to Mariano, Chicho, Valeria and doña Cecilia for their candid hospitality.

This research was supported by Agencia Nacional de Promoción Científica y Tecnológica PICT 2007-01222.


  1. Abril A, Villagra PE, Noe L (2009) Spatiotemporal heterogeneity of soil fertility in the Central Monte desert (Argentina). J Arid Environ 73:901–906CrossRefGoogle Scholar
  2. Alvarez JA (2008) Bases ecológicas para el manejo sustentable del bosque de algarrobos (Prosopis flexuosa D.C.) en el noreste de Mendoza. Argentina. Universidad Nacional del Comahue, BarilocheGoogle Scholar
  3. Alvarez JA, Villagra PE, Cony M (2006) Estructura y estado de conservación de los bosques de Prosopis flexuosa D.C. en el Noreste de Mendoza, Argentina. Rev Chil Hist Nat 79:75–87CrossRefGoogle Scholar
  4. Alvarez JA, Villagra PE, Rossi BE, Cesca E (2009) Spatial and temporal litterfall heterogeneity generated by woody species in the Central Monte desert. Plant Ecol 205:295–303Google Scholar
  5. Ansley RJ, Jacoby PW, Cuomo GJ (1990) Water relations of honey mesquite following severing of lateral roots: influence of location and amount of subsurface water. J Range Manage 43:436–442CrossRefGoogle Scholar
  6. Ansley RJ, Boutton TW, Jacoby PW (2007) Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations. In: Sosbee RE, Wester DB, Britton CM, McArthur ED, Kitchen SG (eds) Proceedings: Shrubland dynamics-fire and water. USDA Forest Service RMRS-P-47, Fort Collins, pp 96–103Google Scholar
  7. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235CrossRefPubMedGoogle Scholar
  8. Berntson GM (1994) Modeling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493CrossRefGoogle Scholar
  9. Berntson GM (1995) The characterization of topology: a comparison of four topological indices for rooted binary trees. J Theor Biol 177:271–281CrossRefGoogle Scholar
  10. Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690CrossRefPubMedGoogle Scholar
  11. Bouma TJ, Nielsen KL, Van Hal J, Koutstaal B (2001) Root system topology and diameter distribution of species from habitats differing in inundation frequency. Funct Ecol 15:360–369CrossRefGoogle Scholar
  12. Burgess SO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311CrossRefGoogle Scholar
  13. Burke S (1999) Missing values, outliers, robust statistics and non-parametric methods. In: LC-GC Europe Online Supplement, pp 19–24Google Scholar
  14. Caldwell MM (1994) Exploiting nutrients in soil fertile microsites. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity of plants. Academic, New York, pp 325–347Google Scholar
  15. Carrera AL, Mazzarino MJ, Bertiller MB, Del Valle HF, Martínez Carretero E (2009) Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J Arid Environ 73:192–201CrossRefGoogle Scholar
  16. Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M (2003) Dissecting Arabidopsis lateral root development. TRENDS Plant Sci 8:165–171CrossRefPubMedGoogle Scholar
  17. Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant`s belowground zone of influence. Ecology 84:2313–2321CrossRefGoogle Scholar
  18. De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. TRENDS Plant Sci 11:434–439CrossRefPubMedGoogle Scholar
  19. D’Odorico P, Laio F, Porporato A, Rodriguez-Iturbe I (2003) Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Adv Water Res 26:59–70CrossRefGoogle Scholar
  20. Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490CrossRefGoogle Scholar
  21. Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2004) Hydrotropism: root growth responses to water. TRENDS Plant Sci 10:44–50CrossRefGoogle Scholar
  22. Ehleringer JR, Philips SL, Schuster WSF, Sandquist DR (1991) Differential utilization of summer rains by desert plants. Oecologia 88:430–434CrossRefGoogle Scholar
  23. Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77Google Scholar
  24. Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, San Diego, pp 305–323Google Scholar
  25. Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389CrossRefGoogle Scholar
  26. Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382CrossRefGoogle Scholar
  27. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant and Soil 232:51–68CrossRefGoogle Scholar
  28. Gile LH, Gibbens RP, Lenz JM (1997) The near-ubiquitous pedogenic world of mesquite roots in an arid basin floor. J Arid Environ 35(1):39–58CrossRefGoogle Scholar
  29. González Loyarte M, Rodeghiero AG, Buk E, Trione S (2000) Análisis comparativo de dos comunidades en el bosque de Prosopis flexuosa DC. del NE de Mendoza, Argentina. Multequina 9:75–89Google Scholar
  30. Hartle RT, Fernandez GCJ, Nowak RS (2006) Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs. J Arid Environ 64:586–603CrossRefGoogle Scholar
  31. Heitschmidt RK, Ansley RJ, Dowhower SL, Jacoby PW, Price DL (1988) Some observations from the excavation of honey mesquite root systems. J Range Manage 41:227–231CrossRefGoogle Scholar
  32. Hermans C, Hammond J, White P, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? TRENDS Plant Sci 11:610–617CrossRefPubMedGoogle Scholar
  33. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  34. IAEA/WMO (2006) Global Network of Isotopes in Precipitation. The GNIP database. Accessible at
  35. Jarrell WM, Virginia RA (1990) Response of mesquite to nitrate and salinity in a simulated phreatic environment: water use, dry matter and mineral nutrient accumulation. Plant Soil 125:185–196CrossRefGoogle Scholar
  36. Jobbágy EG, Nosetto MG, Villagra PE (2008) Isótopos estables como trazadores de las fuentes de agua de bosques de algarrobo en un desierto arenoso. In: Libro de Resúmenes del XXI Congreso Argentino de Ciencias del Suelo, Potrero de los Funes, San Luis, p 556Google Scholar
  37. Jones MN (1984) Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Wat Res 18:643–646CrossRefGoogle Scholar
  38. Kiss JZ (2007) Where’s the water? Hydrotropism in plants. P Natl Acad Sci USA 104:4247–4248CrossRefGoogle Scholar
  39. Kiss JZ, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE (2003) Root phototropism: how light and gravity interact in shaping plant form. Grav and Space Biol Bull 16:55–60Google Scholar
  40. Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in root. P Natl Acad Sci USA 104:4724–4729CrossRefGoogle Scholar
  41. Lambers H, Chapin SF, Pons T (1998) Plant physiological ecology. Springer, United States of AmericaGoogle Scholar
  42. Maestre FT, Reynolds JF (2006) Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings. Plant Ecol 183:65–75CrossRefGoogle Scholar
  43. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77CrossRefPubMedGoogle Scholar
  44. McCulley RL, Jobbágy EG, Pockman WT, Jackson RB (2004) Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia 141:620–628CrossRefPubMedGoogle Scholar
  45. Montaña C, Cavagnaro B, Briones O (1995) Soil water use by co-existing shrubs and grasses in the southern Chihuahuan Desert, Mexico. J Arid Environ 31:1–13CrossRefGoogle Scholar
  46. Morello J (1958) La Provincia Fitogeográfica del Monte. Opera Lilloana 2:5–115Google Scholar
  47. Mullen JL, Hangarter RP (2003) Genetic analyses of the gravitropic set-point angle in lateral roots of Arabidopsis. Adv Space Res 31:2229–2236CrossRefPubMedGoogle Scholar
  48. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller R, Keeney D (eds) Methods of soil analysis. Chemical and microbiological properties. American Society of Agronomy and Soil Science, Madison, pp 539–580Google Scholar
  49. Noe L, Abril A (2008) Interacción entre calidad de restos vegetales, descomposición y fertilidad del suelo en el desierto del Monte de Argentina. Ecol Austral 18:181–193Google Scholar
  50. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol and Sys 4:25–51CrossRefGoogle Scholar
  51. Okalebo JR, Gathua KW, Woomer PL (1993) Laboratory methods of soil and plant analysis: A working manual. Tropical Soil Biology and Fertility Programme, NairobiGoogle Scholar
  52. Passera CB, Dalmasso AD, Borsetto O (1983) Método de “point quadrat modificado”. In: Candia R, Braun R (eds) Taller de arbustos forrajeros para zonas áridas y semiáridas. Subcomité Asesor del Árido Subtropical Argentino de la Secretaría de Ciencia y Tecnología, Orientación Gráfica Argentina, Buenos Aires, pp 71–79Google Scholar
  53. Pérez-Torres C, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272CrossRefPubMedGoogle Scholar
  54. Regairaz MC (2000) Suelos de Mendoza. In: Abraham EM and Rodríguez Martínez F (Eds) Argentina. Recursos y problemas ambientales de la zona árida. Provincias de Mendoza, San Juan y La Rioja. Junta de Gobierno de Andalucía—Universidades y Centros de Investigación de La Región Andina Argentina, Mendoza, pp 59–62Google Scholar
  55. Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489CrossRefGoogle Scholar
  56. Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. J Veg Sci 14:543–550Google Scholar
  57. Ryel RJ, Leffler AJ, Opeck MS, Ivans CY, Caldwell MM (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141:335–345CrossRefPubMedGoogle Scholar
  58. Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–505CrossRefGoogle Scholar
  59. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494CrossRefGoogle Scholar
  60. Seyfried MS, Schwinning S, Walvoord MA, Pockman WT, Newman BD, Jackson RB, Philips EM (2005) Ecohydrological control of deep drainage in arid and semiarid regions. Ecology 86:277–287CrossRefGoogle Scholar
  61. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New YorkGoogle Scholar
  62. Spek LY, Van Noordwijk M (1994) Proximal root diameter as predictor of total root size for fractal branching models. II. Numerical model. Plant Soil 164:119–127CrossRefGoogle Scholar
  63. Torres E, Zambrano J (2000) Hidrogeología de la provincia de Mendoza. In: Abraham EM, Rodríguez Martínez F (eds) Argentina. Recursos y Problemas Ambientales de la Zona Árida. Provincias de Mendoza, San Juan y La Rioja. Junta de Gobierno de Andalucía- Universidades y Centros de Investigación de la Región Andina Argentina., Mendoza, pp 49–58Google Scholar
  64. Walvoord MA, Philips FM, Stonestrom DA, Evans DR, Hartsough PC, Newman BD, Strieg RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024CrossRefPubMedGoogle Scholar
  65. Weatherburn MW (1967) Phenolhypochlorite reaction for determination of ammonia. Anal Chem 39:971–974CrossRefGoogle Scholar
  66. Whitford WG (2002) Ecology of desert systems. Academic, LondonGoogle Scholar
  67. Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19CrossRefGoogle Scholar
  68. Zhang H, Rong H, Pilbeam D (2007) Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aranzazú Guevara
    • 1
  • Carla Valeria Giordano
    • 1
  • Julieta Aranibar
    • 2
    • 3
  • Marcelo Quiroga
    • 2
  • Pablo E. Villagra
    • 2
    • 4
  1. 1.Instituto Argentino de Investigaciones en Zonas Áridas (IADIZA)Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET)MendozaArgentina
  2. 2.Instituto Argentino de Investigaciones en Nivología, Glaciología y Ciencias Ambientales (IANIGLA)Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-Mendoza CONICET)MendozaArgentina
  3. 3.Instituto de Ciencias Básicas, Universidad Nacional de CuyoCiudad UniversitariaMendozaArgentina
  4. 4.Facultad de Ciencias AgrariasUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations