Plant and Soil

, Volume 330, Issue 1–2, pp 173–184 | Cite as

Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes

  • Stephan Blossfeld
  • Jérôme Perriguey
  • Thibault Sterckeman
  • Jean-Louis Morel
  • Rainer Lösch
Regular Article


The present study presents new insights into pH dynamics in the rhizosphere of alpine pennycress (Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey), maize (Zea mays L.) and ryegrass (Lolium perenne L.), when growing on three soils contaminated by trace metals with initial pH values varying from 5.6 to 7.4. The pH dynamics were recorded, using a recently developed 2D imaging technique based on planar pH optodes. This showed that alpine pennycress and ryegrass alkalinized their rhizosphere by up to 1.7 and 1.5 pH units, respectively, whereas maize acidified its rhizosphere by up to −0.7 pH units. The alkalinization by the roots of alpine pennycress and ryegrass was permanent and not restricted to specific root zones, whereas the acidification along the maize roots was restricted to the elongation zone and thus only temporary. Calculations showed that such pH changes should have noticeable effects on the solubility of the trace metal in the rhizosphere, and therefore on their uptake by the plants. As a result, it is suggested that models for trace metal uptake should include precise knowledge of rhizospheric pH conditions.


Maize Alpine pennycress Ryegrass Cadmium Alkalinization Acidification 



This work was supported by the “Deutscher Akademischer Austausch Dienst” (DAAD) and the “Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche” within the framework of the PROCOPE programme in 2008.

The authors would like to express their thanks to Bernard Colin (INPL(ENSAIA)/INRA), W. Seidel, A. Lanzinger, M. Laug and W. Müller (University Düsseldorf) for their technical support and PreSens GmbH for the supply of planar optodes.


  1. Barber SA (1995) Soil nutrient bioavailability. A mechanistic approach. Wiley, New York, p 414Google Scholar
  2. Blossfeld S, Gansert D (2007) A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ 30:176–186CrossRefPubMedGoogle Scholar
  3. Bravin M, Martí A, Clairotte M and Hinsinger P (2009a) Rhizosphere alkalisation—a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant Soil 318:257–268Google Scholar
  4. Bravin M, Tentscher P, Rose J, Hinsinger P (2009b) Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environmental Science & Technology (in press)Google Scholar
  5. Bruemmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z PflanzenernaÉhr Bodenkd 149:382–398CrossRefGoogle Scholar
  6. Christensen TH (1984) Cadmium soil sorption at low concentrations: II. Reversibility, effect of changes in solute composition, and effect of soil aging. Water, Air, & Soil Pollution 21:115–125CrossRefGoogle Scholar
  7. Colmer TD, Bloom AJ (1998) A comparison of NH4+ and NO3- net fluxes along roots of rice and maize. Plant Cell Environ 21:240–246CrossRefGoogle Scholar
  8. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249CrossRefPubMedGoogle Scholar
  9. Fan L, Neumann PM (2004) The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol 135:2291–2300CrossRefPubMedGoogle Scholar
  10. Fischer WR, Flessa H, Schaller G (1989) pH values and redox potentials in microsites of the rhizosphere. Z PflanzenernaÉhr Bodenkd 152:191–195CrossRefGoogle Scholar
  11. Gahoonia T, Claassen N, Jungk A (1992) Mobilization of phosphate in different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248CrossRefGoogle Scholar
  12. Gansert D, Blossfeld S (2008) The application of novel optical sensors (Optodes) in experimental plant ecology. In Progress in Botany. pp 333–358Google Scholar
  13. Gansert D, Stangelmayr A, Krause C, Borisov AY, Wolfbeis OS, Arnold A, Müller A (2006) Hybrid optodes (HYBOP). In: Popp J, Strehle M (eds) Biophotonics: Visions for a better health care. Wiley VCH, Weinheim, pp 477–518Google Scholar
  14. Gérard E (2000) Caractérisation du cadmium phytodisponible des sols par des méthodes isotopiques. In Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires. Institut National Polytechnique de Lorraine, Vandoeuvre-Lès-Nancy, p 153Google Scholar
  15. Gupta SK, Aten C (1993) Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int J Environ Anal Chem 51:25–46CrossRefGoogle Scholar
  16. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59CrossRefGoogle Scholar
  17. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303CrossRefPubMedGoogle Scholar
  18. Hinsinger P, Bengough A, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and SoilGoogle Scholar
  19. Huber C, Klimant I, Krause C, Wolfbeis OS (2001) Dual lifetime referencing as applied to a chloride optical sensor. Anal Chem 73:2097–2103CrossRefPubMedGoogle Scholar
  20. Jaillard B, Ruiz L, Arvieu J-C (1996) pH mapping in transparent gel using color indicator videodensitometry. Plant Soil 183:85–95CrossRefGoogle Scholar
  21. Kim TK, Silk WK (1999) A mathematical model for pH patterns in the rhizospheres of growth zones. Plant Cell Environ 22:1527–1538CrossRefGoogle Scholar
  22. Kirk GJD (2004) The biogeochemistry of submerged soils. In The Biogeochemistry of Submerged Soils. pp i–xiGoogle Scholar
  23. Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137CrossRefGoogle Scholar
  24. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646CrossRefPubMedGoogle Scholar
  25. Kirk GJD, Saleque MA (1995) Solubilization of phosphate by rice plants growing in reduced soil: prediction of the amount solubilized and the resultant increase in uptake. Eur J Soil Sci 46:247–255CrossRefGoogle Scholar
  26. Klimant I, Huber C, Liebsch G, Neurauter G, Stangelmayr A, Wolfbeis OS (2001) Dual lifetime referencing (DLR)—a new scheme for converting fluorescence intensity into a frequencydomain or time-domain information. In: Valeur B, Brochon JC (eds) New trends in fluorescence spectroscopy: Application to chemical and life sciences. Springer, Berlin, pp 257–275Google Scholar
  27. Lebourg A, Sterckeman T, Ciesielski H, Proix N (1998) Trace metal speciation in three unbuffered salt solutions used to assess their bioavailability in soil. J Environ Quality 27:584–590CrossRefGoogle Scholar
  28. Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32CrossRefGoogle Scholar
  29. Luo YM, Christie P, Baker AJ (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41:161–164CrossRefPubMedGoogle Scholar
  30. Luster J, Göttlein A, Sarret G, Nowack B (2009) Sampling, defining, characterising and modeling the rhizosphere—the soil science toolbox. Plant and SoilGoogle Scholar
  31. Ma QY, Lindsay WL (1995) Estimation of Cd2+ and Ni2+ activities in soils by chelation. Geoderma 68:123–133CrossRefGoogle Scholar
  32. Marschner H (1995) Mineral nutrition of higher plants. Academic, London, p 889Google Scholar
  33. Marschner H, Römheld V (1983) In vivo measurement of root induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z Pflanzenphysiol 111:241–251Google Scholar
  34. McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990) Evidence for Cotransport of Nitrate and Protons in Maize Roots: II. Measurement of NO(3) and H Fluxes with Ion-Selective Microelectrodes. Plant Physiol 93:290–294CrossRefPubMedGoogle Scholar
  35. McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188:153–159CrossRefGoogle Scholar
  36. Miller A, Cramer M (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36CrossRefGoogle Scholar
  37. Monsant AC, Tang C, Baker AJ (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73:635–642CrossRefPubMedGoogle Scholar
  38. Page AL, Bingham FT, Chang AC (1981) Cadmium. In: Lepp NW (ed) Effect of heavy metal pollution on plants. Volume 1. Effects of trace metals on plant function. Applied Science, London, pp 77–109Google Scholar
  39. Perriguey J (2006) Evaluation de l’equation de Nye-Tinker-Barber pour la modelisation du prelevement de Cadmium par le mais et le tabouret calaminaire. In ENSAIA. INPL, NancyGoogle Scholar
  40. Perriguey J, Sterckeman T, Morel J-L (2008) Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environ Exper Bot 63:333–341CrossRefGoogle Scholar
  41. Peters WS (2004) Growth rate gradients and extracellular pH in roots: how to control an explosion. New Phytol 162:571–574CrossRefGoogle Scholar
  42. Pilet P-E, Versel J-M, Mayor G (1983) Growth distribution and surface pH patterns along maize roots. Planta 158:398–402CrossRefGoogle Scholar
  43. Pinel F, Leclerc-Cessac E, Staunton S (2003) Relative contributions of soil chemistry, plant physiology and rhizosphere induced changes in speciation on Ni accumulation in plant shoots. Plant Soil 255:619–629CrossRefGoogle Scholar
  44. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37CrossRefPubMedGoogle Scholar
  45. Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediat 3:145–172CrossRefGoogle Scholar
  46. Roose T, Kirk G (2009) The solution of convection–diffusion equations for solute transport to plant roots. Plant Soil 316:257–264CrossRefGoogle Scholar
  47. Salam AK, Helmke PA (1998) The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma 83:281–291CrossRefGoogle Scholar
  48. Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131CrossRefGoogle Scholar
  49. Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde. Heidelberg, SpektrumGoogle Scholar
  50. Silk WK, Bambic DG, O’Dell RE, Green PG (2006) Seasonal and spatial patterns of metals at a restored copper mine site II. Copper in riparian soils and Bromus carinatus shoots. Environ Pollut 144:783–789CrossRefPubMedGoogle Scholar
  51. Sterckeman T, Baize D, Mench M, Sappin-Didier V, Proix N, Gomez A (2000) Comparison de trois methods d’extraction chimique d’estimation de la phytodisponibilité de Cd, Cu, Pb et Zn pour le blé. In A.I.P. AGREDE—QUASAR program p. 50. Institut National de la Recherche Agronomique (INRA)Google Scholar
  52. Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194CrossRefGoogle Scholar
  53. Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequences for the assessment of the soil quantity and capacity factors. Plant Soil 262:289–302CrossRefGoogle Scholar
  54. Sterckeman T, Duquene L, Perriguey J, Morel JL (2005) Quantifying the effect of rhizosphere processes on the availability of soil cadmium and zinc. Plant Soil 276:335–345CrossRefGoogle Scholar
  55. Taylor AR, Bloom AJ (1998) Ammonium, nitrate, and proton fluxes along the maize root. Plant Cell Environ 21:1255–1263CrossRefGoogle Scholar
  56. Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford, p 444Google Scholar
  57. Versel J-M, Mayor G (1985) Gradients in maize roots: local elongation and pH. Planta 164:96–100CrossRefGoogle Scholar
  58. Versel J-M, Pilet P-E (1986) Distribution of growth and proton efflux in gravireactive roots of maize (Zea mays L.). Planta 167:26–29CrossRefGoogle Scholar
  59. Walter A, Silk WK, Schurr U (2000) Effect of soil pH on growth and cation deposition in the root tip of zea mays L. J Plant Growth Regul 19:65–76PubMedGoogle Scholar
  60. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stephan Blossfeld
    • 1
    • 3
  • Jérôme Perriguey
    • 1
    • 4
  • Thibault Sterckeman
    • 1
  • Jean-Louis Morel
    • 1
  • Rainer Lösch
    • 2
  1. 1.Nancy Université, INRALaboratoire Sols et EnvironnementVandoeuvre-lès-Nancy cedexFrance
  2. 2.AschaffenburgGermany
  3. 3.Forschungszentrum Juelich, ICG-3, PhytosphereJuelichGermany
  4. 4.INRA, Centre de NancySDARChampenouxFrance

Personalised recommendations