Plant and Soil

, Volume 328, Issue 1–2, pp 203–215 | Cite as

Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture

  • Stefanie Heinze
  • Joachim Raupp
  • Rainer Georg Joergensen
Regular Article


In the Darmstadt long-term fertilization trial, the application of composted cattle farmyard manure without (CM) and with (CMBD) biodynamic preparations was compared to mineral fertilization with straw return (MIN). The present study was conducted to investigate the effects of spatial variability, especially of soil pH in these three treatments, on soil organic matter and soil microbial biomass (C, N, P, S), activity (basal CO2 production and O2 consumption), and fungal colonization (ergosterol). Soil pH was significantly lower in the MIN treatments than in the organic fertilizer treatments. In the MIN treatments, the contents of soil organic C and total N were also significantly lower (13% and 16%, respectively) than those of the organic fertilizer treatments. In addition, the total S content increased significantly in the order MIN < CM < CMBD. The microbial biomass C content was significantly lower (9%) in the MIN treatments than in the organic fertilizer treatments. Microbial biomass N and biomass P followed microbial biomass C, with a mean C/N ratio of 7.9 and a mean C/P ratio of 23. Neither the microbial biomass C to soil organic C ratio, the metabolic quotient qCO2, nor the respiratory quotient (mol CO2/mol O2) revealed any clear differences between the MIN and organic fertilizer treatments. The mean microbial biomass S content was 50% and the mean ergosterol content was 40% higher in the MIN treatments compared to the organic fertilizer treatments. The increased presence of saprotrophic fungi in the MIN treatments was indicated by significantly increased ratios of ergosterol-to-microbial biomass C and the microbial biomass C/S ratio. Our results showed that complex interactions between the effects of fertilizer treatments and natural heterogeneity of soil pH existed for the majority of microbial biomass and activity indices.


Soil organic matter Microbial biomass Ergosterol Basal respiration Respiratory quotient Farmyard manure 



The technical assistance of Gabriele Dormann is highly appreciated. This project was supported by a grant of the Research Training Group 1397 “Regulation of soil organic matter and nutrient turnover in organic agriculture” of the German Research Foundation (DFG).


  1. Abele U (1987) Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch. Schriftenreihe des Bundesministers für Ernährung, Landwirtschaft und Forsten. Heft 345. Münster HiltrupGoogle Scholar
  2. Allison MF, Killham K (1988) Response of microbial biomass to straw incorporation. J Soil Sci 39:237–242CrossRefGoogle Scholar
  3. Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic-C in arable soils. Soil Biol Biochem 21:471–479CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255CrossRefGoogle Scholar
  5. Bachinger J (1996) Der Einfluss unterschiedlicher Düngerarten (mineralisch, organisch, biologisch-dynamisch) auf die zeitliche Dynamik und räumliche Verteilung von bodenchemischen und -mikrobiologischen Parametern der C- und N-Dynamik sowie auf das Pflanzen- und Wurzelwachstum vom Winterroggen. Schriftenreihe: Band 7. IBDF, DarmstadtGoogle Scholar
  6. Banerjee MR, Chapman SJ (1996) The significance of microbial biomass sulphur in soil. Biol Fertil Soils 22:116–125CrossRefGoogle Scholar
  7. Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst L, Hedlund K, Mäder P, Mikola J, Robin C, Setälä H, Tatin-Froux F, van der Putten WH, Scheu S (2008) Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol Biochem 40:2297–2308CrossRefGoogle Scholar
  8. Blöschel G (2006) Geostatistische Methoden bei der hydrologischen Regionalisierung. Wiener Mitteilungen Band 197:21–39Google Scholar
  9. Böhme L, Langer U, Böhme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152CrossRefGoogle Scholar
  10. Bonmati M, Ceccanti B, Nanniperi P (1991) Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil. Soil Biol Biochem 23:391–396CrossRefGoogle Scholar
  11. Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22:393–399CrossRefGoogle Scholar
  12. Brookes PC, Polwson DS, Jenkinson DS (1982) Measurement of microbial phosphorus in soil. Soil Biol Biochem 14:319–329CrossRefGoogle Scholar
  13. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842CrossRefGoogle Scholar
  14. Bruun S, Christensen BT, Hansen EM, Magid J, Jensen LS (2003) Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol Biochem 35:67–76CrossRefGoogle Scholar
  15. Chan KY, Heenan DP (1999) Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci Soc Am J 63:1841–1844Google Scholar
  16. Chander K, Hartmann G, Joergensen RG, Khan KS, Lamersdorf N (2008) Comparison of three methods for measuring heavy metals in soils contaminated by different sources. Arch Agron Soil Sci 54:413–422CrossRefGoogle Scholar
  17. Chapman SJ (1987) Microbial sulphur in some Scottish soils. Soil Biol Biochem 19:301–305CrossRefGoogle Scholar
  18. Cheshire MV, Bedrock CN, Williams BL, Chapman SJ, Solntseva I, Thomsen I (1999) The immobilization of nitrogen by straw decomposing in soil. Eur J Soil Sci 50:329–341CrossRefGoogle Scholar
  19. Christensen BT (1988) Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions. Biol Fertil Soils 5:304–307CrossRefGoogle Scholar
  20. Christensen BT (1996) The Askov long-term experiments on animal manure and mineral fertilizers. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models. NATO ASI Series, 38 I, Springer, Berlin, pp 301–312Google Scholar
  21. Dilly O (2001) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33:117–127CrossRefGoogle Scholar
  22. Dilly O (2003) Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microbiol Ecol 43:375–381CrossRefPubMedGoogle Scholar
  23. Dilly O (2005) Microbial energetics in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: Roles in genesis and functions. Springer, Berlin, pp 123–138CrossRefGoogle Scholar
  24. Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304CrossRefGoogle Scholar
  25. Edmeades DC (2003) The long-term effect of manures and fertilizers on soil productivity and quality: A review. Nutr Cycl Agroecosyst 66:165–180CrossRefGoogle Scholar
  26. Elfstrand S, Hedlund K, Mårtensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621CrossRefGoogle Scholar
  27. Ellmer F, Peschke H, Köhn W, Chmielewski FM, Baumecker M (2000) Tillage and fertilizing effects on sandy soils. Review and selected results of long-term experiments at Humboldt-University Berlin. J Plant Nutr Soil Sci 163:267–272CrossRefGoogle Scholar
  28. Eriksen J, Mortensen JV (1999) Soil sulphur status following long-term annual application of animal manure and mineral fertilizers. Biol Fertil Soils 28:416–421CrossRefGoogle Scholar
  29. FAO-WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No 103. FAO, RomeGoogle Scholar
  30. Fließbach A, Oberholzer HR, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284CrossRefGoogle Scholar
  31. Guerrero C, Moral R, Gómez I, Zornoza R, Arcenegui V (2007) Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Biores Technol 98:3259–3264CrossRefGoogle Scholar
  32. Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137CrossRefGoogle Scholar
  33. Heitkamp F, Raupp J, Ludwig B (2009) Impact of fertilizer type and rate on carbon and nitrogen pools in a sandy Cambisol. Plant Soil 319:259–275 (doi: 10.1007/s11104-008-9868-x)CrossRefGoogle Scholar
  34. Hepperly PR, Douds D Jr, Seidel R (2006) The Rodale Institute farming systems trial 1981 to 2005: Long term analysis of organic and conventional maize and soybean cropping systems. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 15–32Google Scholar
  35. Hoffmann B, Müller T, Joergensen RG (2009) CO2 production and O2 consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand. J Plant Nutr Soil Sci (doi: 10.1002/jpln.200800187)
  36. Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD (2005) Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci Soc Am J 69:1338–1350CrossRefGoogle Scholar
  37. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans Royal Soc London B 329:361–368CrossRefGoogle Scholar
  38. Joergensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309CrossRefGoogle Scholar
  39. Joergensen RG, Mueller T (1996) The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k EN value. Soil Biol Biochem 28:33–37CrossRefGoogle Scholar
  40. Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991CrossRefGoogle Scholar
  41. Joergensen RG, Kübler H, Meyer B, Wolters V (1995) Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biol Fertil Soils 19:215–219CrossRefGoogle Scholar
  42. Karamanos RE, Goh TB, Poisson DP (2005) Nitrogen, phosphorus, and sulfur fertility of hybrid canola. J Plant Nutr 28:1145–1161CrossRefGoogle Scholar
  43. Khan KS, Heinze S, Joergensen RG (2009) Simultaneous measurement of S, macronutrients, and heavy metals in the soil microbial biomass with CHCl3 fumigation and NH4NO3 extraction. Soil Biol Biochem 41:309–314CrossRefGoogle Scholar
  44. Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  45. Koepf HH, Schaumann W, Haccius M (1990) Bio-dynamic agriculture: An introduction. Anthroposophic, HudsonGoogle Scholar
  46. Lejon DPH, Sebastia J, Lamy I, Chaussod R, Ranjard L (2007) Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management. Microb Ecol 53:650–663CrossRefPubMedGoogle Scholar
  47. Liu TL, Juang KW, Lee DY (2006) Interpolating soil properties using Kriging combined with categorial information of soil maps. Soil Sci Soc Am J 70:1200–1209CrossRefGoogle Scholar
  48. Ludwig B, Schulz E, Merbach I, Rethemeyer J, Flessa H (2007) Predictive modelling of the C dynamics for eight variants of the long-term static fertilization experiment in Bad Lauchstädt using the Rothamsted Carbon Model. Eur J Soil Sci 58:1155–1163CrossRefGoogle Scholar
  49. Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697CrossRefPubMedGoogle Scholar
  50. Magid J, Luxhøi J, Jensen LS, Møller J, Bruun S (2006) Establishment of a long-term field trial with urban fertilizers—is recycling of nutrients from urban areas to prei-urban organic farms feasible? In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 59–78Google Scholar
  51. Marinari S, Mancinelli R, Campiglia E, Grego S (2006) Chemical and biological indicators of soil quality in organic and conventional farming systems in central Italy. Ecol Indic 6:701–711CrossRefGoogle Scholar
  52. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  53. Melero S, Ruiz Porras JC, Herencia JF, Madejon E (2006) Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Till Res 90:162–170CrossRefGoogle Scholar
  54. Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36:667–675CrossRefGoogle Scholar
  55. Podolinsky A (2000) Biodynamik—Landwirtschaft der Zukunfit. Frumenta Verlag, ArlesheimGoogle Scholar
  56. Raupp J (2001) Manure fertilisation for soil organic matter maintenance and its effects upon crops and the environment, evaluated in a long-term trial. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CABI, Wallingford, pp 301–308Google Scholar
  57. Raupp J, Oltmanns M (2006a) Farmyard manure, plant based organic fertilisers, inorganic fertiliser—which sustains soil organic matter best? Asp Appl Biol 79:273–276Google Scholar
  58. Raupp J, Oltmanns M (2006b) Soil properties, crop yield and quality with farmyard manure with and without biodynamic preparations and with inorganic fertilizers. In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. ISOFAR Scientific Series, Verlag Dr. Köster, Berlin, pp 135–155Google Scholar
  59. Reddy KS, Singh M, Swarup A, Rao AS, Singh KN (2002) Sulfur mineralization in two soils amended with organic manures, crop residues, and green manures. J Plant Nutr Soil Sci 165:167–171CrossRefGoogle Scholar
  60. Robertz M, Muckenheim T, Eckl S, Webb L (1999) Kostengünstige Labormethode zur Bestimmung der mikrobiellen Bodenatmung nach DIN 19737. Wasser Boden 51/5:48–53Google Scholar
  61. Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulfur in soil. Soil Biol Biochem 13:493–498CrossRefGoogle Scholar
  62. Scharfy D, Raupp J, Neumann E, Römheld V (2005) Der Einfluss organischer Düngung im Langzeitdüngungsversuch auf das Ausmaß der Wurzelinfektion mit Arbuskulärer Mykorrhiza sowie die Entwicklung des wurzelexternen Myzels bei Kartoffel (Solanum tuberosum). In: Heß J, Rahmann G (eds) Ende der Nische. Beiträge zur 8. Wissenschaftstagung Ökologischer Landbau. Kassel University Press, Kassel, pp 229–232Google Scholar
  63. Scheller E, Joergensen RG (2008) Decomposition of wheat straw differing in nitrogen content in soils under conventional and organic farming management. J Plant Nutr Soil Sci 171:886–892CrossRefGoogle Scholar
  64. Schnug E, Haneklaus S, Murphy DPL (1993) Impact of sulphur fertilization on fertilizer nitrogen efficiency. Sulphur Agr 17:8–12Google Scholar
  65. Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618CrossRefGoogle Scholar
  66. Stutter MI, Deeks LK, Billet MF (2004) Spatial variability in soil ion exchange chemistry in a granitic upland catchment. Soil Sci Soc Am J 68:1304–1314CrossRefGoogle Scholar
  67. Turinek M, Grobelnik-Mlakar S, Bavec M, Bavec F (2009) Biodynamic agriculture research progress and priorities. Renew Agr Food Syst 24(2):146–154CrossRefGoogle Scholar
  68. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707CrossRefGoogle Scholar
  69. Wälder K, Wälder O, Rinklebe J, Menz J (2008) Estimation of soil properties with geostatistical methods in floodplains. Arch Agron Soil Sci 54:275–295CrossRefGoogle Scholar
  70. Watson CJ, Kilpatrick DJ, Cooper JE (1995) The effect of increasing application rate of granular calcium ammonium nitrate on net nitrification in a laboratory study of grassland soils. Fertil Res 40:155–161CrossRefGoogle Scholar
  71. Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different n-fertilizers and organic manures. Soil Biol Biochem 25:659–669CrossRefGoogle Scholar
  72. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of microbial biomass C by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169CrossRefGoogle Scholar
  73. Wu J, O’Donnell G, Syers JK (1993) Microbial growth and sulphur immobilization following the incorporation of plant residues into soil. Soil Biol Biochem 25:1567–1573CrossRefGoogle Scholar
  74. Wu J, O’Donnell AG, He ZL, Syers JK (1994) Fumigation-extraction method for the measurement of soil microbial biomass-S. Soil Biol Biochem 26:117–125CrossRefGoogle Scholar
  75. Zaller JG, Köpke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Bio Fertil Soils 40:222–229Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stefanie Heinze
    • 1
  • Joachim Raupp
    • 2
  • Rainer Georg Joergensen
    • 1
  1. 1.Department of Soil Biology and Plant NutritionUniversity of KasselWitzenhausenGermany
  2. 2.Institute for Biodynamic ResearchDarmstadtGermany

Personalised recommendations