Advertisement

Plant and Soil

, Volume 328, Issue 1–2, pp 145–154 | Cite as

Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering

  • Calvaruso Christophe
  • Turpault Marie-Pierre
  • Uroz Stéphane
  • Leclerc Elisabeth
  • Kies Antoine
  • Frey-Klett Pascale
Regular Article

Abstract

The role of ectomycorrhizal fungi on mineral nutrient mobilization and uptake is crucial for tree nutrition and growth in temperate forest ecosystems. By using a “mineral weathering budget” approach, this study aims to quantify the effect of the symbiosis with the ectomycorrhizal model strain Laccaria bicolor S238N on mineral weathering and tree nutrition, carrying out a column experiment with a quartz/biotite substrate. Each column was planted with one Scots pine (Pinus sylvestris L.) non-mycorrhizal or mycorrhizal with L. bicolor, with exception of the abiotic control treatment. The columns were continuously supplied with a nutrient-poor solution. A mineral weathering budget was calculated for K and Mg. The pine shoot growth was significantly increased (73%) when plants were mycorrhizal with L. bicolor. Whatever their mycorrhizal status, pines increased mineral weathering by factors 1.5 to 2.1. No difference between non-mycorrhizal and mycorrhizal pine treatments was revealed, however, mycorrhizal pines assimilated significantly more K and Mg. This suggests that in our experimental conditions, L. bicolor S238N improved shoot growth and K and Mg assimilation in Scots pine mainly by increasing the uptake of dissolved nutrients, linked to a better exploration and exploitation of the soil by the mycorrhizal roots.

Keywords

Ectomycorrhiza Laccaria bicolor S238N Scots pine Mineral weathering Biotite Nutrient uptake 

Notes

Acknowledgements

We acknowledge K. Bateman for review of the English language, A. Kohler, G. Nourrisson, J.L. Churin, and P. Vion for technical help. This work was supported by the Andra (Agence nationale pour la gestion des déchets radioactifs) and by the Lorraine Region.

References

  1. Ahonen-Jonnarth U, Van Hees PAW, Lundström US et al (2000) Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytol 146:557–567CrossRefGoogle Scholar
  2. Ahonen-Jonnarth U, Göransson A, Finlay RD (2003) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings treated with elevated Al concentrations. Tree Physiol 23:157–167PubMedGoogle Scholar
  3. April R, Keller D (1990) Mineralogy of the rhizosphere in forest soils of the eastern United States-Mineralogic studies of the rhizosphere. Biogeochemistry 9:1–18CrossRefGoogle Scholar
  4. Arocena JM, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. For Ecol Manag 133:61–70CrossRefGoogle Scholar
  5. Balogh-Brunstad Z, Keller CK, Dickinson J et al (2008a) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72:2601–2618CrossRefGoogle Scholar
  6. Balogh-Brunstad Z, Keller CK, Gill RA et al (2008b) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167CrossRefGoogle Scholar
  7. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York, USAGoogle Scholar
  8. Baum C, Stetter U, Makeschin F (2002) Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and a field experiment. For Ecol Manag 163:1–8CrossRefGoogle Scholar
  9. Blum JD, Klaue A, Nezat CA et al (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731PubMedCrossRefGoogle Scholar
  10. Boyle JR, Voigt GK (1973) Biological weathering of silicate materials. Implications for tree nutrition and soil genesis. Plant Soil 38:191–201CrossRefGoogle Scholar
  11. Brandes B, Golbold DL, Kuhn AJ et al (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New phytol 140:735–743CrossRefGoogle Scholar
  12. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266PubMedCrossRefGoogle Scholar
  13. Casarin V, Plassard C, Hinsinger P et al (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185CrossRefGoogle Scholar
  14. Chalot M, Javelle A, Blaudez D et al (2002) An update on nutrient processes in ectomycorrhizas. Plant Soil 244:165–175CrossRefGoogle Scholar
  15. Cromack K Jr, Sollins P, Grostein WC et al (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468CrossRefGoogle Scholar
  16. Di Battista C, Selosse MA, Bouchard D et al (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S238. Mycol Res 100:1315–1324CrossRefGoogle Scholar
  17. Drever JI (2005) Surface and ground water, weathering, and soils. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 5. Elsevier, AmsterdamGoogle Scholar
  18. Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann For Sci 48:239–251CrossRefGoogle Scholar
  19. Finlay RD (2004) Mycorrhizal fungi and their multifunctional roles. Mycologist 18:91–96CrossRefGoogle Scholar
  20. Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139–144PubMedGoogle Scholar
  21. Gadd GM (2007) Geomycology: biogeochemical transformation of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49PubMedCrossRefGoogle Scholar
  22. Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111CrossRefGoogle Scholar
  23. Hagerberg D, Thelin G, Wallander H (2003) The production of ectomycorrhizal mycelium in forests: Relation between forest nutrient status and local mineral sources. Plant Soil 252:279–290CrossRefGoogle Scholar
  24. Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–139CrossRefGoogle Scholar
  25. Heinonsalo J, Klett P, Pierrat JC et al (2004) Fate, tree growth effect and potential impact on soil microbial communities of mycorrhizal and bacterial inoculation in a forest plantation. Soil Biol Biochem 36:211–216CrossRefGoogle Scholar
  26. Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265CrossRefGoogle Scholar
  27. Hinsinger P, Jaillard B, Dufey JE (1992) Rapid weathering of a trioctahedral mica by roots of Ryegrass. Soil Sci Soc Am J 56:977–982CrossRefGoogle Scholar
  28. Hoffland E, Kuyper TW, Wallander H et al (2004) The role of fungi in weathering. Front Ecol Environ 5:258–264CrossRefGoogle Scholar
  29. Jentschke G, Brandes B, Kuhn AJ et al (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246CrossRefGoogle Scholar
  30. Jongmans AG, Van Breemen N, Lundstrom U et al (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  31. Kelly E, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53CrossRefGoogle Scholar
  32. Kernaghan G (2005) Mycorrhizal diversity: cause and effect? Pedobiologia 49:511–520CrossRefGoogle Scholar
  33. Landeweert R, Hoffland E, Finlay RD et al (2001) Linking plants to rock: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–253PubMedCrossRefGoogle Scholar
  34. Le Tacon F, Bouchard D, Churin JL et al (2005) Mycorhization contrôlée du Douglas et du chêne. For Entrep 164:33–37Google Scholar
  35. Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric micro-organisms of pine. Soil Sci Soc Am J 55:1009–1016CrossRefGoogle Scholar
  36. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  37. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102Google Scholar
  38. Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  39. Pachlewski R, Packlewska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus sylvestris) with the aid of the method of mycorrhizal synthesis in pure culture on agar. Forest Research Institute, WarsawGoogle Scholar
  40. Paris F, Bonnaud P, Ranger J et al (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. 1. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil 177:191–201CrossRefGoogle Scholar
  41. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. 2. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150CrossRefGoogle Scholar
  42. Quoreshi AM, Timmer VR (2000) Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Can J For Res 30:744–752CrossRefGoogle Scholar
  43. Robert M, Berthelin J (1986) Role of biological and biochemical factors in soil mineral weathering. In: Huang PM (ed.) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison, Wi, pp 453–495Google Scholar
  44. Rosling A, Lindahl BD, Taylor AFS et al (2004) Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37PubMedCrossRefGoogle Scholar
  45. Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644CrossRefGoogle Scholar
  46. Smith SA, Read D (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  47. Spyridakis DC, Chesters G, Wilde SA (1967) Kaolinisation of biotite as a result of coniferous and deciduous seedling growth. Soil Sci Soc Am Proc 31:203–210CrossRefGoogle Scholar
  48. Torres Aquino M, Plassard C (2004) Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol Ecol 48:149–156PubMedCrossRefGoogle Scholar
  49. Van Breemen N, Finlay RF, Lundström U et al (2000) Mycorrhizal weathering: a true case of mineral plant nutrition. Biogeochemistry 49:53–67CrossRefGoogle Scholar
  50. Van Hees PAW, Rosling A, Lundström US et al (2006) The biogeochemical impact of ectomycorrhizal conifers on major soil elements (Al, Fe, K and Si). Geoderma 136:364–377CrossRefGoogle Scholar
  51. Van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814PubMedCrossRefGoogle Scholar
  52. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  53. Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32CrossRefGoogle Scholar
  54. Wallander H, Johansson L, Pallon J (2002) PIXE analysis to estimate the elemental composition of ectomycorrhizal rhizomorphs grown in contact with different minerals in forest soil. FEMS Microbiol Ecol 39:147–156PubMedCrossRefGoogle Scholar
  55. Yuan L, Huang J, Li X et al (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Calvaruso Christophe
    • 1
    • 4
  • Turpault Marie-Pierre
    • 1
  • Uroz Stéphane
    • 2
  • Leclerc Elisabeth
    • 3
  • Kies Antoine
    • 4
  • Frey-Klett Pascale
    • 2
  1. 1.INRA, UR1138 “Biogéochimie des Ecosystèmes Forestiers”, Centre de NancyChampenouxFrance
  2. 2.INRA-UHP, UMR1136 “Interactions Arbres-Microorganismes”, Centre de NancyChampenouxFrance
  3. 3.Andra, Direction Scientifique/Service TransfertsChâtenay-MalabryFrance
  4. 4.Université du Luxembourg “Physique des Radiations”LuxembourgLuxembourg

Personalised recommendations