Plant and Soil

, 326:291 | Cite as

Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions

  • Wei Ming Shi
  • Wei Feng Xu
  • Su Mei Li
  • Xue Qiang Zhao
  • Gang Qiang Dong
Regular Article


Demand for low-input nitrogen sustainable rice is increasing to meet the need for environmentally friendly agriculture and thus development of rice with high nitrogen use efficiency (NUE) is a major objective. Hence, understanding how rice responds to growth under low-nitrogen conditions is essential to devise new ways of manipulating genes to improve rice NUE. In this study, using two rice varieties with different seedling-stage NUE obtained from previous field experiments, we investigated the physiological and molecular responses of young rice to low-nitrogen conditions. Our results suggest that glutamine synthetase (GS) and NADH-dependent glutamate synthase (NADH-GOGAT) play important roles in N assimilation of seedling rice roots under low-nitrogen conditions; the regulatory mechanisms of GS and NADH-GOGAT in seedling rice roots do not occur at the transcription level, and may be posttranscriptional; OsAMT1;1 play important roles in rice N acquisition by partially regulating N uptake under low-nitrogen conditions; and OsAMT1;1 and OsNRT2;1 also play important roles in rice N acquisition by partially regulating root growth and development under low-nitrogen conditions. The challenge for future studies is to characterize the functional roles of GS, NADH-GOGAT, OsAMT1;1, and OsNRT2;1 in young rice NUE using RNAi and mutant techniques.


Glutamine synthetase NADH-dependent glutamate synthase Nitrogen use efficiency OsAMT1;1 OsNRT2;1 Seedling-stage rice 



We sincerely thank Professor Andre Jagendorf (Cornell University) for a critical review of the manuscript. The present investigation was financially supported by grants from the National 973 Project (No. 2007CB109303), CAS Knowledge Innovation Project (No. KSCX2-YW-N-002), and the National Natural Science Foundation of China (No. 30390083).


  1. Aslam M, Huffaker RC (1989) Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol 91:1152–1156. doi: 10.1104/pp.91.3.1152 CrossRefPubMedGoogle Scholar
  2. Britto DT, Kronzucker HJ (2004) Biotechnology of nitrogen acquisition in rice — Implication for food security. In: Amancio S, Stulen I (eds) Plant ecophysiology, Nitrogen acquisition and assimilation in higher plants. Kluwer Academic Publishers, 261–281Google Scholar
  3. Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258. doi: 10.1073/pnas.061034698 CrossRefPubMedGoogle Scholar
  4. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271. doi: 10.1104/pp.127.1.262 CrossRefPubMedGoogle Scholar
  5. Chichkova S, Arellano J, Vance CP, Hernandez G (2001) Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J Exp Bot 52:2079–2087PubMedGoogle Scholar
  6. Covelo F, Rodriguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in Quercus robur population. Plant Soil 311:109–119. doi: 10.1007/s11104-008-9662-9 CrossRefGoogle Scholar
  7. Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot (Lond) 99:1153–1160. doi: 10.1093/aob/mcm051 CrossRefGoogle Scholar
  8. Engineer CB, Kranz RG (2007) Reciprocal leaf and root expression of AtAmt1.1 and root architectural changes in response to nitrogen starvation. Plant Physiol 143:236–250. doi: 10.1104/pp.106.088500 CrossRefPubMedGoogle Scholar
  9. Fan X, Jia L, Li Y, Smith SJ, Miller AJ, Shen Q (2007) Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot 58:1729–1740. doi: 10.1093/jxb/erm033 CrossRefPubMedGoogle Scholar
  10. Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO3- and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155. doi: 10.1046/j.1365-313x.2001.01016.x CrossRefPubMedGoogle Scholar
  11. Gazzarini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, Vonwiren N (1999) Three functional transporters for constitutive, diurnally regulated, starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947CrossRefGoogle Scholar
  12. Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864. doi: 10.1093/jexbot/53.370.855 CrossRefPubMedGoogle Scholar
  13. Groat RG, Vance CP (1981) Root nodule enzymes of ammonia assimilation in Alfalfa (Medicago sativa L.): developmental patterns and response to applied nitrogen. Plant Physiol 67:1198–1203. doi: 10.1104/pp.67.6.1198 CrossRefPubMedGoogle Scholar
  14. Guo R, Li X, Christie P, Chen Q, Jiang R, Zhang F (2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamic in intensive production systems. Plant Soil 313:55–70. doi: 10.1007/s11104-008-9679-0 CrossRefGoogle Scholar
  15. Hirel B, Gadal P (1980) Glutamine synthetase in rice. Plant Physiol 66:619–623. doi: 10.1104/pp.66.4.619 CrossRefPubMedGoogle Scholar
  16. Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in Maize. Plant Physiol 125:1258–1270. doi: 10.1104/pp.125.3.1258 CrossRefPubMedGoogle Scholar
  17. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot (Lond) 96:639–646. doi: 10.1093/aob/mci216 CrossRefGoogle Scholar
  18. Kondo M, Pablico PP, Aragones DV, Agbisit R, Abe J, Morita S, Courtois B (2003) Genotypic and environmental variations in root morphology in rice genotype under upland field conditions. Plant Soil 255:189–200. doi: 10.1023/A:1026142904714 CrossRefGoogle Scholar
  19. Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119:1041–1045. doi: 10.1104/pp.119.3.1041 CrossRefPubMedGoogle Scholar
  20. Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476. doi: 10.1046/j.1469-8137.2000.00606.x CrossRefGoogle Scholar
  21. Kumar A, Silim S, Okamoto M, Siddiqi MY, Glass ADM (2003) Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26:907–914. doi: 10.1046/j.1365-3040.2003.01023.x CrossRefPubMedGoogle Scholar
  22. Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:152–167. doi: 10.1023/A:1024175307238 CrossRefGoogle Scholar
  23. Lejay L, Tillard P, Lepetit M, Domingo OF, Filleur S, Daniel VF, Gojon A (1999) Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J 26:143–155Google Scholar
  24. Li SM, Shi WM (2006) Quantitative characterization of nitrogen regulation of OsAMT1;1, OsAMT1;2 and OsAMT2;2 expression. Russ J Plant Physiol 53:837–843. doi: 10.1134/S102144370606015X CrossRefGoogle Scholar
  25. Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10, 422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60:617–631. doi: 10.1007/s11103-005-5441-7 CrossRefPubMedGoogle Scholar
  26. Loqué D, Yuan LX, Kojima S, Gojon A, Wirth J, Gazzarrini S, Ishiyama K, Takahashi H, von Wirén N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48:522–534. doi: 10.1111/j.1365-313X.2006.02887.x CrossRefPubMedGoogle Scholar
  27. Mayer M, Ludewig U (2006) Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biol 8:1–7. doi: 10.1055/s-2006-923877 CrossRefGoogle Scholar
  28. Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acid and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59:111–119. doi: 10.1093/jxb/erm208 CrossRefPubMedGoogle Scholar
  29. Ni PS (1985) Water and mineral nutrition. In: Xue YL, Xia ZA (eds) Laboratory manual for plant physiology study. Shanghai Society of Plant Physiologists, Shanghai, pp 57–66Google Scholar
  30. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yanaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217. doi: 10.1093/jexbot/52.359.1209 CrossRefPubMedGoogle Scholar
  31. Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass ADM (1999) AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J 19:143–152. doi: 10.1046/j.1365-313X.1999.00505.x CrossRefPubMedGoogle Scholar
  32. Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabiopsis. Plant Physiol 140:909–921. doi: 10.1104/pp.105.075721 CrossRefPubMedGoogle Scholar
  33. Shi WM, Yao J, Yan F (2009) Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contsminstion in South-Eastern China. Nutr Cycl Agroecosyst 83:73–84. doi: 10.1007/s10705-008-9201-3 CrossRefGoogle Scholar
  34. Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J (2003) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44:1396–1402. doi: 10.1093/pcp/pcg169 CrossRefPubMedGoogle Scholar
  35. Suenaga A, Moriya K, Sonoda Y, Ikeda A, Wirén NV, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211. doi: 10.1093/pcp/pcg017 CrossRefPubMedGoogle Scholar
  36. Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327. doi: 10.1093/jxb/erm016 CrossRefPubMedGoogle Scholar
  37. Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-Encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058. doi: 10.1105/tpc.104.022046 CrossRefPubMedGoogle Scholar
  38. Tony R, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921. doi: 10.1104/pp.105.075721 CrossRefGoogle Scholar
  39. UNEP (1999) Global environment outlook 2000. United Nations Environment Programme and London Earthscan, NairobiGoogle Scholar
  40. Von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261. doi: 10.1016/S1369-5266(00)00073-X CrossRefGoogle Scholar
  41. Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol 103:1259–1267. doi: 10.1104/pp.103.4.1463 CrossRefPubMedGoogle Scholar
  42. Xu WF, Shi WM (2006) Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann Bot (Lond) 98:965–974. doi: 10.1093/aob/mcl189 CrossRefGoogle Scholar
  43. Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007) Nitrogen-dependence posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiology 143:732–744CrossRefPubMedGoogle Scholar
  44. Zhang L, Spiertz JHJ, Zhang S, Li B, Werf WVD (2008) Nitrogen economy in relay intercropping systems of wheat and cotton. Plant Soil 303:55–68. doi: 10.1007/s11104-007-9442-y CrossRefGoogle Scholar
  45. Zhao XQ, Shi WM (2006) Expression analysis of the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Sci 170:748–754. doi: 10.1016/j.plantsci.2005.11.006 CrossRefGoogle Scholar
  46. Zhao SP, Zhao XQ, Shi WM (2006) Differentiation of nitrogen uptake of rice seedlings (Oryza Sativa L.) of cultivars different in nitrogen use efficiency and its mechanism. Soil 38:400–409 in ChineseGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Wei Ming Shi
    • 1
  • Wei Feng Xu
    • 1
  • Su Mei Li
    • 1
  • Xue Qiang Zhao
    • 1
  • Gang Qiang Dong
    • 1
    • 2
  1. 1.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
  2. 2.Graduate University of Chinese Academy of ScienceBeijingChina

Personalised recommendations